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density estimation problem with Gaussian mixture model repre-
senting the feature points. The recent graph-based CPDwork [7]
explored graph centralities to bring topological information during
the correspondence computation. Furthermore, feature-dependant
“nite mixture model was proposed in [8]. Though these algorithms
are robust to the missing correspondences, due to the smooth
transformation computation being very sensitive to the ambigu-
ity in “nding local feature correspondences, the joint estimation of
correspondence and smooth transformation is still dif‘cult to the
outlier issues that have both missing correspondences and local
large deformations.

By directly using the complete image data to recover dense
correspondences at pixel-level precision, most intensity-based
nonrigid registration approaches are regarded as global model
based methods that are often formulated as global energy mini-
mization problems with the energy being composed of an
regularization term and a similarity term [10...14]. The relative
weight of similarity term and regularization term can cause the
well-known trade-off between the registration accuracy and the
smoothness of the deformation “eld [12]. In the presence of out-
liers, the accurate and plausible local structure matching does
not exist using whole-intensity  driven transformation
relative spatial regularization can either cause non-s
implausible distortion in these outlier regions or intro
smooth and inaccurate mapping artifacts betw|
images. This outlier problem can be partly solved
expectation and maximization algorithm to estimate
or partial data [10,11], using a locally varying weig
regularization and image similarity [13...18], creati
correspondences [19...24] and cost-function masking
developing SIFT "ow for large displacement [2]. Mo
approaches are largely dependent on outlier region s
without giving full consideration to both the missing
dences and local large deformations.

At present, there is no doubt that methods and algo
intelligent computing and machine learning are very
to tackle this challenging outlier problem in structure
In these research “elds, outliers mean the extreme o
substantially different from all other ones in the real
structure matching, the missing correspondences and local large
deformations introduce the extreme local geometric and inten-
sity differences between the two images
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structure in order to gather more deformation vector samples of the
same structure in the kernel regression, whereby the regression of
smooth deformations can be locally compliant with the underlying

local saliency structures without directing the deformation across
the edges and corners of local structures.

This paper is an extended version of a preliminary conference
work [38]. The extensions are augmented by more detailed method
descriptions, more validations and more thorough discussions for
some typical casesof 2D local structure matching, which are general
and common to the computer vision and pattern recognition. The
rest of this paper is organized as follows. The proposed algorithm
is elaborated in Section 2 followed by typical experimental results
in Section 3. The whole paper is concluded in Section 4.

2. Methods
2.1. Coarse-to-“ne structure matching basedon block matching

The structure matching problem is formulated as an estima-
tion of deformation of a moving image |y with respect to a
reference image Ig using transformation parameterized by an
unknown displacement vector t (x), where x is the position vector
in the reference image. The deformed moving image is de“ned by
Im  (X) =ly(x +t(x)). A displacement vector “eld describes defor-
mation at all image pixels to maximize the similarity measure
between the deformed moving image and reference image. To
obtain the displacement “eld, our algorithm is built upon a three-
step coarse-to-“ne iterative block matching scheme proposed in
[30]. This block matching framework is well known to deal with
large deformation in nonrigid image registration. Fig. 1 displays the
three-step coarse-to-“ne iterative structure matching framework,
where different levels have their own resolutions but the same
procedure. First, the moving image |y is deformed with an initial
displacement “eld obtained by spatial interpolation of the output
deformation “led obtained on the previous level. The deformed
moving image and the reference image on the current level are
registered by block-matching to obtain the discrete displacement
“led. Second, after using the JSSadaptive kernel regression (see
the green block diagrams in Fig. 1) with the kernel re’ecting the
edge-structure correspondence and reference structurees orienta-
tion, the structure matching scheme is to reconstruct dense current
deformation “eld from the discrete displacement “eld. At last, the
resulted global deformation for the iteration at next level is com-
posed of initial deformation and current deformation by sampling
the initial deformation “eld. The “rst levelss initial global defor-
mation is an af‘ne transformation asthe two images are typically
already af‘ne-registered before using our structure matching.

In the “rst step at each level, the moving image is deformed by
an initial displacement “eld from previous level and sampled in the
position of the sample of reference image to get deformed moving
image. Asin red block diagram at Fig. 1, for every pixel in deformed
moving image, ablock (i.e., awhite neighborhood in Fig. 1) around
the pixel of moving image Iy is taken and matched against a set
of potential correspondent blocks in reference image. The block
displacement (the red arrow in Fig. 1) that achieves the best sim-
ilarity (0.65) between the blocks in moving and reference images,
is stored as the discrete displacement for the original pixel. With
the nature of realistic structure deformation imposing the spatial
transformation to be a diffeomorphism, therefore the Jacobian of
the local deformation *“eld must be positive. This condition is pre-
served while only one pixel displacement is allowed for each pixel
at each level of multi-resolution  block matching. For every level of
the multi-resolution  pyramid, the “nal transformation is obtained
by composing the transformation on the previous level with the one
on the current level, in order to preserve the Jacobian positiveness
condition [30].

In this study, we employ point-wise MI [39] as the local simi-
larity measure for block matching. As a gold-standard registration
criterion for two images to be registered, MI of the image intensity
values of corresponding pixel pairs is maximal if the two images are
geometrically aligned. The MI between the reference and moving
images is de“ned and computed as:

M = H(R+ H(M)SH(R,M)
o P (ir, im) ) @
= iR, im) lo (7
2 plrimes (5506 S
IR\I'M
where igr and iy are image intensities of reference and
moving  image. H(l)= 8> .p(i)logp(i) and H(R,M)=

éZiR,iMp(iR’iM)IOQ p(ir, im) are the entropy of the intensi-
ties of image | and the entropy of the joint intensities of two
images, p (i) is the intensity probabilities with p (ir) = ZiRp(iR, im)
and p(iy) = ZiM p(ir. im), P (ir, im) is the joint probability density
function (PDF)estimated by the joint intensity histogram h(ig, im).

When the global MI of whole images can be calculated asasum

of local contribution Sy, de“ned for each individual image pixel
pair ig, im, the above global MI can be rewritten as:
1 .
MI = NZS\M (irs im)
iRl M 2
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where the point-wise Sy, is calculated from the joint PDF corre-
sponding to the whole images which have atotal of N overlapping
image pixels. For a given displacement, this joint PDFwill be the
global joint intensity histogram of the reference image with the
displaced whole moving image. This is important for the multi-
resolution block matching, where one pixel displacement can
drastically change the PDF estimation. To estimate the optimal
displacement for every pixel of moving image at multi-resolution
block matching, the moving image is displaced by one pixel dis-
placement to be overlapped with the “xed reference image, and
the local evaluation of the MI can be computed just by summing
the contributions of pixel pairs from the overlapped region. There-
fore, at every pixel the current displacement corresponding to the
biggest local MI are stored as the optimal displacement for the
current deformation “eld estimation.

Although block matching has many advantages in obtaining the
deformation of an image, implementing only this algorithm is still
insuf‘cient to avoid the irregularity of transformations such astear-
ing, folding and distorting in the challenging structure matching
with outliers. Therefore, further reconstruction constraint is indis-
pensable to be integrated into the registration procedure. To this
end, local JSSadaptive kernel regression (asin the green block dia-
grams in Fig. 1) is applied into this discrete displacement “elds in
the second stage to reconstruct the dense deformation “eld: First,
we compute structure tensor at each pixel position in the reference
and the deformed moving images. Based on the structure tensor
of reference image, the local structure adaptive anisotropic kernel
is designed to spread along the direction of the local edge struc-
ture in reference image, whereby we use this anisotropic kerneles
orientation information to adaptively steer the local kernel in ker-
nel regression for dense deformation reconstruction. This scheme
enables effective edge-aware deformation reconstruction that pre-
vents the unrealistic deformation “eld to be smeared across object
boundaries. Second, the center-surround dissimilarity between
neighboring local structure tensors is explored to estimate the
saliency map indicating the local saliency edge structure distri-
bution of image. Based on the matching degree of local saliency
map, the joint saliency map is constructed to emphasize the JSSse
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Fig. 1. Flowchart of coarse-to-“ne structure matching framework. (For interpretation

discrete displacement “elds in the kernel regression for outlier
removal. Details of the proposed approach are described in Sec-
tions 2.2...2.4 After the above-mentioned processing for each level
in this coarse-to-“‘ne framework, asmooth and dense deformation

“eld isiteratively achieved asthe global deformation at the last and
“nest level.

2.2. Kernel regression based local deformation reconstruction

Inspired by the successful applications in modern image deblur-
ring and super-resolution imaging [30,31], we utilize kernel
regression to reconstruct the smooth and dense deformation “elds
from the discrete displacement ‘“elds obtained through block
matching. Suppose we have irregularly distributed displacement
‘elds {y;, xi}iF’:1 given in the form

yi = T(x;) + &, Xi , i=1,..,P ?3)
where vy; is a discrete displacement vector (response variable)
at position (explanatory variable) Xx;, T(-) describes the desired
dense deformation “elds in the moving windows (kernel)
with independent and identically distributed zero mean noise
i = (Xj). In statistics, the function T (-) is treated as a regres-
sion of y on x, T(x) = E{y|x}. In this way, the reconstruction of
nonrigid deformation “elds is from the “eld of the regression
techniques.

Suppose the point of interest x to be reconstructed is near X;,
then the regression of dense deformation “eld T(x;) can be approx-
imated by alocal Taylor series expansion

of the references to color in text, the reader is referred to the web version of the article.)

T TO+ T 6§ + 301§ )T Hessian(T (o))"

x(xiSx)+ - o+ I(xiSx)+ ITvech{(x; SX)x;iSx) 1+ (4)

where vech(-) is ahalf-vectorization operator of asymmetric matrix
and { 9, 1, 2,..., ~}are N+1unknown parameters to be esti-
mated. As in the 2D case, X =[x, X»]T, we can easily estimate the
unknown parameters as

0= T(x)

.
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Since we have known the discrete displacement vectors {yi}iF’:l,
we can compute { n}wzo by “nding the optimum solution of the

following weighted least squares problem:

P
min ”"}Z[yié 05 J(xiSx) S .__]ZKH(xiéx) (6)

0 1, 2 X
i=1

where Ky(+) is akernel function (see the detail in the next section),
which not only smoothes the approximation but also penalizes
distance away from Xx.
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In addition, if we assume y=[yi, Y2, ..., yp|, b=

[o T.oow 117, and K=diagKu(xi$x), Ku(2$%, ...
Kn(Xp Sx)], then we can rewrite the optimization problem in
a matrix form
b = argmin (y $ Xb) "K(y $ Xb) @
b
with
1 (x1 3% vech™{(x;Sx)(x15x) "}
1 (x23x%) vech™{(x, S x)(x25x) "}
X =

1 (xpSx) vech{(xpS(xp3xT}

and the least-squares estimation solution can be expressed as
S1
b= (XTKX)™ XTKy (8)

Because the zero-order Taylor series expansion known as the
Nadaray...Watsonestimator is suf‘cient to reconstruct the displace-
ment vectors, the estimation of the deformation “eld at x has the
form

P -
_ Zi:l KH(Xi S X)yi
0= —p . . =~
> Knxi $ %)
Since images have outliers, it is reasonable to consider uncer-
tainty for each pixel. Therefore, we add a weight (or certainty)
function ¢ to Eq. (9)
P -
iz Knxi $%) - (yi -c)
P ~
Do Kuxi $x) ¢ (10)

K (y-©)
K ¢

T(X) = ©)

TX) = o =

The last line of Eqg. (10) can also be expressed in the form of nor-
malized convolution [30], where denotes convolution operation.

Fig. 2 illustrates the smooth displacement vectors reconstructed
for every pixel in brain tumor resection region using local ker-
nel regression. Because block matching results inherently contain
incorrect matches, which are exacerbated by the outliers in the
tumor resection region. As a result, the con”icts between neigh-
boring displacement vectors (see the several red circles shown in
Fig. 2(a)) widely exist in the discrete displacement “elds for the
tumor region. Those displacement con”icts can easily introduce
the topology change of structures, such as tearing and distorting.
Fortunately, all the displacement vector con’icts are removed or
smoothed by the local kernel regression in Fig. 2(b), where the dis-
placement vectors having opposite directions fully disappear with
the displacement magnitudes simultaneously being smoothed.
Next, to match local structures in the presence of outliers, we design
structural adaptive kernel function and robust weighing scheme for
the moving window to further boost the accuracy and robustness
of the local deformation reconstruction.

2.3. Local structure-adaptive kernel function

As a crucial component of local kernel regression, the shape of
the kernel function (or moving window) determines the spatial
distribution  of samples which are gathered for the quality of the
locally reconstructed signal. In principle, isotropic Gaussian kernels
are mostly used as kernel functions in nonparametric regression.
However, traditional isotropic Gaussian kernels are insuf‘cient to
cover more samples of the same modality along some speci‘c ori-
entations in signal reconstruction. Besides, Gaussian kernelse “xed

scales and orientations can neither detect nor enhance edge struc-
tures. These factors easily cause diffusion across object boundaries.

To remedy these restrictions, Pham et al. proposed an anisotropic

kernel function to adapt its shape to the density of sampling [40].
Afterwards, Takeda et al. [41] utilized gradient covariance matrices
to construct steering kernels, which have been proved to possess
the ability to capture the edges of animage and be extremely robust
to noise and perturbations of the data.

In dense deformation reconstruction, the desirable local kernel
function is assumed to be extended along local structure orien-
tation in the reference image so that it can gather more samples
of discrete displacement vectors that correspond to the same
saliency structure in the reference image.



856 B.Qin et al. / Applied Soft Computing 46 (2016) 851...867

Fig. 2. Application of kernel regression in deformation reconstruction. (a) The con’icts between neighboring displacement vectors (several red circles) widely exist in the
discrete displacement “eld for the tumor region. (b) The displacement vector con’icts are removed or smoothed by the local kernel regression along with the displacement
magnitudes simultaneously being smoothed. (For interpretation of the references to color in this legend, the reader is referred to the web version of the article.)

of {u, v}, thus alocal structure-adaptive Gaussian kernel in 2D case
is designed as

2 2
a(x,xg) = z;uyexp {S <2d“u + ;‘;)}
(13)

d=XéX0

dy=4d, v,

u= TTAC v= *A c (14)
where A= ( S )/ ( u+ ) .Thetwo directional scales of the
Gaussian kernel can be adjusted by the parameter >0 and the local
scale . Speci‘cally, determines the eccentricity of the kernel
while . affects the number of discrete vectors that contribute to
the reconstruction of continuous deformation vectors. For the sake
of simplicity, the local scale is set to half the neighborhood window
size for each kernel according to our experience. Therefore, we set

=0.5 and =1.5 because we utilize a 3 x 3 pixel neighborhood
window in our experiments.

Two kernel functions for two distinct image structures are dis-
played at the doll images in Fig. 3, where the crosses indicate two
different kinds of typical image structures (blue cross for border

The length of the vector is determined by the scale in the direction
of the vector.

Fig. 4 illustratively
adaptive kernel to isotropic kernel in our structure-adaptive kernel
regression. The regions pointed by red arrows are small scale struc-

explains why we prefer local structure-

tures which have local large deformations. The directions of the
displacement vectors (spaced every 5 pixels) in these small struc-
tures are inevitably con”icted with those of the large deformations
of the neighboring structures. These deformation con”icts that are
introduced by the opposite displacement vectors can easily cause
tearing, folding or distorting of the local small scale structures. For
example, the eyesin Fig. 4(c) display distortion owing to the con”ict
of the deformation directions displayed in Fig. 4(e). Comparatively,
our local structure-adaptive kernels suppress the contributions of
the displacement vectors which are not consistent with the struc-
ture orientation, the deformation con’icts are therefore removed
in Fig. 4(f) with no distortion existing in the eyes at Fig. 4(d).

Fig. 4(h) demonstrates the overview of mesh deformation (10
pixels vertex spacing) in the local structure-adaptive kernel regres-
sion, which can produce the smooth adaptivity of local mesh

deformation to the local anisotropic structures. Obviously, this local
structure-adaptive  kernel regression obtains smooth mesh bound-
aries which are consistent with the local structurese boundaries.
However, isotropic kernels in kernel regression easily produce
irregularly deformed local meshes which are not adaptive to the
local structures, so that it is very dif‘cult to identify boundaries
of local structures from the non-smooth mesh deformation in
Fig. 4

In kernel regression, the weight function c(x), between 0 and

1, speci‘es the reliability
mation

(or certainty) at x for the local esti-
in a moving window and always describes the spatial
varying special context. With locall

dependence in the locall

[28,29]. Since the region with saliency structure information has

real in"uence over locally adaptive image processing based on ker-

nel regression, Suarez et al. [30] proposed a weighting scheme in

the kernel regression of registration transformations by using the

scalar

erence image may introduce non-corresponding salient structural

To avoid the above-mentioned mis-assignment and minimize
the outlier effect on the deformation reconstruction, we propose a
robust=weightimg—mechanism—by—simultaneously—considermg—tie—
matching degree of local saliency structures in the overlapping
parts of the two images. We deploy the concept of JSMinto our
robust weighting mechanism and pay more attention to the JSSsn
the two images. The JSSsand their incurring deformations should
be emphatically treated in
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Fig. 3. Gaussian kernels designed for different image local structures. (a) Two labeled positions (red cross and blue one). (b) The scales and orientations of Gaussian Kernels
in corresponding positions. (c) Gaussian kernel for the region with blue cross. (d) Gaussian kernel for the region with red cross. (For interpretation of the references to color
in this legend, the reader is referred to the web version of the article.)

Fig. 4. Comparison between using isotropic kernels and using local structure-adaptive kernels in kernel regression based deformation reconstruction. (a) and (b) The reference
and moving images. (c) and (d) Isotopic kernels in kernel regression introduce eye distortions (red arrow) in registered moving image, while local structure-adaptive kernels
can remove these distortions. (e) and (f) Isotopic kernels produce the deformation con”icts in the displacement vector “elds, while local structure-adaptive kernels remove
these con”icts. (g) and (h) Isotropic kernels easily produce irregularly deformed local meshes, while local structure-adaptive kernels achieve the smooth adaptivity of local
mesh deformation to the local anisotropic structures. (For interpretation of the references to color in this legend, the reader is referred to the web version of the article.)
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for agiven point xg and its neighborhood , the saliency value S(xg)
at xp in a saliency map can be computed through

S(xo) = avgz LST(X) § LST(X) b (15)

X

where p de“nes adistance metric describing the dissimilarity

between two LSTs,which is detailed in the following section. The
operator avg computes the average of the dissimilarities within the
neighborhood of xqg. Traditional tensor similarity measures such
as fractional anisotropy (FA) and cosine similarity measure are not
appropriate for de“ning tensor-based saliency operator because
they only compare either scales or orientations of two tensors.
Fortunately, a few improved tensor similarity measures comput-
ing both scales and orientations of two tensors have been reported.
In [44], Zhang et al. introduced diffusion tensor metric, which is
de“ned as

< 8 . .1 -
TlsTZD:\/15(T18T2é53Tr2(T15T2)) (16)

where T1S8T, c= \/Tr(T1 S T2)? is the Euclidean distance

between two tensors {Ty, T2}, Tr is the operator for computing the
trace of matrix.

In a tensor-based saliency map, the saliency value is a general
representation of the local edge structure distribution in an image.
Low saliency values always appear in the homogeneous and back-
ground regions while high saliency values are assigned to the edge
structures owing to the highlighted contrast among neighboring

LSTsin these regions. After the two normalized saliency maps were
achieved to indicate the local edge structure distribution, JSMis
ready to describe the matching degree between the two saliency
maps at every pixel pair in the overlapping regions of the two
images. Given apoint xgin the reference image and its correspond-
ing point Xy in the moving image after initial transformation, their
joint-saliency value in a JSMis de“ned as

A-B

JSXR, XM) = MIN{SR(XR), Su(Xm)} B+ [ST(xR) S LST0u) o

an

where {Sg(-), Su(-)} denote the saliency values in the saliency maps
of the reference and the moving images, respectively. The empirical
parameters Aand Bare used to normalize the JSMvalues into a*“nal
value between 0 and 1 for the de“nition of weight function c(x).
In our experiments, A=10 and B= %max( LST(x gr) S LST(Xw) b).
in which B is half the maximum dissimilarity value between
two LSTsin the whole overlapped regions of the two images. It
should be noted that it may introduce a situation that both of the
corresponding pixels are set to high saliency values in the saliency
maps, while their local variations of gradient orientations are
in fact totally different. To avoid this situation, we also consider
the dissimilarity measure between LST(xg) and LST(xy) at the
denominator in Eq. (17).

Fig. 5 shows some examples of normalized JSMwith the color
scale representing different joint saliency values. The high joint
saliency values represented by red color suggest that the underly-
ing pixel pairs come from the JSSsOn the contrary, the regions with
low JSMvalues are rendered in blue color, which indicates that the

Fig. 5. JSMExamples with color scale representing different joint saliency values. Each column shows one case. The reference images and the moving ones are shown at the
top and middle rows. Their JSMsare displayed at the bottom row where the red regions correspond to the higher joint saliency values while the blue regions correspond to
the lower joint saliency values. (For interpretation of the references to color in this legend, the reader is referred to the web version of the article.)
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Fig. 6. The reference and the moving images and their gradient magnitude, largest eigenvalue pro‘les for GSTand LST,and the JSMmagnitude. (a) and (b) The reference
and moving images. (c)...(e)Gradient magnitude pro“les, largest eigenvalue pro‘les of GSTand largest eigenvalue pro‘les of LSTof the red line in (a). (f) and (h) Gradient
magnitude pro“les, largest eigenvalue pro‘les of GSTand largest eigenvalue pro‘les of LSTof the red line in (b). (i) and (j) Saliency value pro‘les of the red lines in (a) and
(b). (k) JSMvalue pro“les of the red lines in (a) and (b). (For interpretation of the references to color in this legend, the reader is referred to the web version of the article.)

underlying pixel pairs originate from either homogeneous regions
or outlier regions. The discrete displacement vectors in these red
JSSegions are expected to contribute more to the kernel regression
than the blue regions having low JSMvalues, this weighting scheme
is therefore called JSSadaptive kernel regression for nonrigid image
registration.

The JSMin our study mainly responds to the corresponding
high-gradient edge pixels. However, it does not simply highlight
the common image gradients in the two images. Fig. 6 vividly
presents the differences between the image gradient magnitude,
the largest eigenvalue of GSTsand LSTs,the saliency value and
the JSM value pro‘les of the same red line at the two images
(Fig. 6(a) and (b)). For easy comparison, the range of ordinates
in Fig. 6(c)...(k) are bound to [0, 1]. As shown in Fig. 6, the image
gradient features in Fig. 6(c) and Fig. 6(f) for the two images are
very sensitive to noise and do not agree with each other at each
overlapping location. The noise sensitivity is gradually reduced
by using the GSTs(Fig. 6(d) and (g)) and the LSTs(Fig. 6(e) and
(h)). The saliency values of the two images in Fig. 6(i) and (j) are
robust to noise due to their computing the regional contrast of LSTs
through Eg. (15). Moreover, the structural image information in a
large region is also comprehensively considered according to Eq.
(15). As aresult, the JSMvalues (Fig. 6(k)) computed through the
saliency values can accurately preserve the JSSsin larger capture
range with smaller variability than the image gradients. Therefore,
the effectiveness of JSMis strongly con“rmed in Fig. 6.

Because of the outliers introduced by missing correspondences,
local large deformations and incorrect block matching, the dense
deformation “elds cannot be simply interpolated from the discrete
displacement vectors in block matching. The JSSadaptive kernel
regression is used to reconstruct the dense deformation “elds from
the discrete displacement vectors, i.e., smooth the outlier effects
on the deformation reconstruction. Due to the expected deforma-
tions in the outlier region being consistent with its neighboring
deformations, the JSMvalues in the neighboring regions are used
to assign different weights to the different displacements of the
neighboring structures, only those neighboring deformations with

high JSM values indicating the consistency in structure orienta-
tions are given high weights in kernel regression based deformation
reconstruction.

Fig. 7 illustrates an improvement on the deformation “eld
reconstruction after introducing the JSM-based local JSSadaptive
kernel regression. The region pointed by red arrows in Fig. 7(c)
and (d) is outlier region with missing correspondences and local
large deformations. Without JSM-based robust weighting mech-
anism, the converged displacement vectors (5 pixels spacing)
from con’icting directions (see Fig. 7(e)) in the outlier region
spread the distortion effect into the eye region (see Fig. 7(c)).
Due to the JSM-based robust weighting mechanism introducing
weighted smoothing effect on the magnitudes and directions of
displacement vectors (see Fig. 7(f)), moving imagess eye distortion
is removed (see Fig. 7(d)) with the outlier structure deformations
being simultaneously matched to those of the reference image
(see Fig. 7(f)). Compared with the deformation meshes (10 pixels
vertex spacing) in Fig. 7(g), the deformation meshes at Fig. 7(h)
display the overall smoothness improvement for the structural
deformations at the outlier structures due to the JSM-based robust
weighting mechanism.

3. Experimental results

To validate the proposed algorithm  on some challenging
images with missing correspondences and local large deforma-
tions, we make a comparison among the proposed algorithm and
other state-of-the-art intensity-based nonrigid registration meth-
ods using some typical 2D image sets, where the moving images
with a variety of outlier structures should be matched into the
reference images.

We choose ANTs* with geodesic symmetric normalization
(Syn) diffeomorphic  transformation and MI (AGS1) [45], ANTs

3 http://www.escience.cn/people/bjgin/research.html
4 http://www.picsl.upenn.edu/ANTs
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Fig. 7. Matching performance improvement through JSM-based robust weighting mechanism. (a) and (b) The reference and moving BA4F&0T5die:Rd) THEERFEGYRENGS 761 200.71 D13
deformations Fhe¢he outlier region (red @heWsy spread the distortion
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