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ABSTRACT This paper proposes a locally adaptive kernel regression with adaptive-scale kernels for
deformable image registration with outliers (i.e., missing correspondences and large local deformations).
The adaptive kernel regression locally constructs dense deformation �elds from the weighted contributions
of each pixel's surrounding discrete displacement �elds in a moving anisotropic kernel by exploiting the
contextual deformations of the corresponding saliency structures in the two images. Speci�cally, we �rst
propose an effective superpixel-based structure scale estimator to estimate the boundary-aware structure
scale of each reference structure. We further propose an edge-aware mismatch scale measuring the mismatch
degree of the edge structures to be matched in the images. By combining the boundary-aware structure scale
with the edge-aware mismatch scale of the underlying saliency structures to be matched, we de�ne edge-
aware adaptive-scale kernels for the locally adaptive kernel regression to ef�ciently construct deformations
for deformable registration with outliers. The experiments show that the proposed method achieves not only
state-of-the-art matching accuracy for normal corresponding structures but also the best matching ef�ciency
for outlier structures in deformable image registration.

INDEX TERMS Deformable registration, structure scale, mismatch scale, joint saliency map, outliers,
spatially adaptive nonparametric regression, joint-saliency structure.

I. INTRODUCTION
Deformable image registration [1], or optical �ow [2] com-
putation (referred to as monomodal deformable image regis-
tration), is the task of spatially aligning the points of every
corresponding local structure by minimizing the feature-
based and/or intensity-based differences between two images.
Accurately matching corresponding local structures in two
images by deformable image registration has numerous appli-
cations in computer vision, image processing and pattern
recognition [1]�[4]. However, because of the image content
changes over a period of time and the different imaging
mechanisms of multimodal sensors, some local structures
presented in one image appear partially or even disappear
completely in another image. These local structures with
missing correspondences are closely intermixed with the
structures' large local deformations in the deformable image

registration. The missing correspondences and local large
deformations of local structures are called outliers in this
paper, robustly determining the deformation �elds or dis-
placement �elds representing the correct alignment of the
local structures is still a challenging unsolved problem in
many �elds, such as machine learning [3], signal process-
ing, medical imaging and image guided surgery [4]. Fig. 1
illustrates both missing correspondence and large local
deformation problems in the two images (Figs. 1(a)-(b)) to
be registered [28]. Compared with traditional registration
approach (Fig. 1(c),(e)) that cannot align the normal and
outlier structures via realistic and reasonable deformations,
our method (Fig. 1(d),(f)) accurately aligns the normal corre-
sponding regions, and maps the outlier regions to the right
location but relax the deformations in the outlier-affected
regions.
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FIGURE 1. Comparison between using traditional and our image
registration methods [28]. (a) and (b) The reference and moving images.
(c) and (e) Traditional method introduces eye distortions (red arrow) in
registered moving image, producing the conflicts of the deformation
fields. (d) and (f) Our method accurately aligns the normal and outlier
structures, relaxing the deformations in the outlier regions.

Deformable image registration can be formulated as the
problem of globally searching for the optimal transforma-
tionT that minimizes the cost functionD (IR, IM ◦ T )+S (T )
between the reference imageIR and the moving imageIM .
The global cost function consists of two terms: the data
term D quanti�es the difference and level of alignment
between the two images, and the regularization termS
regularizes the transformation toward favoring realistic and
reasonable deformation solutions and seeks to address the ill-
posed problem of deformable image registration. The data
term is referred to as a matching criterion and includes
intensity- and/or feature-based approaches. Feature-based
methods [5], [6] usually establish dense deformation �elds
by interpolating the sparse correspondences between local
features. Locating reliable local invariant features from the
outlier structures remains an open problem in feature-based
methods. Intensity-based approaches use the information
of all image pixels to directly estimate the most �exible
dense deformation (or displacement) �eld for each pixel (or
voxel), which can better quantify and represent the matching
accuracy of every point in local structure pairs.

Because global regularization introduces excessive �exi-
bility, the intensity-based approach may favor unrealistic and
unreasonable local deformations when it diffuses transforma-
tions from the structural to non-structural regions. In partic-
ular, the local structural regions make stronger contributions
in the cost function minimization than do the non-structural
regions, and thus, the transformation computation is easily
affected by over-smoothing and is limited to the deformations
in these structural regions. Furthermore, the multi-resolution
strategy for the large local deformation problem has the fol-
lowing inherent disadvantages: the basic sub-sampling pro-
cedure in the multi-resolution strategy causes some displace-
ment details of the edge structures to be removed; inaccurate
initialization and outlier effects propagated from the coarse
level lead to incorrect displacement estimations at �ner levels
in the re�nement procedure; and the multi-resolution strategy
cannot correctly predict the relatively large motion of a
small-scale structure that exhibits a larger scale deformation

than its own scale. Therefore, deformation models with
spatially adaptive regularization [7]�[9] have been proposed
to address the varying deformation properties of local struc-
tures. Certain image segmentation-based works [10]�[12] use
an informative deformation prior for a speci�c region or
tissue type to locally adapt the deformation �eld at various
structures. The image segmentation is also used to address
the missing correspondence problem by creating local
arti�cial correspondences [13], [14], discarding the miss-
ing correspondences via cost-function masking [15], [16],
or developing geometric metamorphosis [17] to separate
the normal deformations from the outlier changes. While
effective, these methods require explicit structure segmenta-
tions or initial outlier localizations. Recently, a low-rank and
sparse decomposition technique [18], [19] has been able to
separate the outlier structures from the `̀ healthy'' parts in a
collection of images to be registered. Despite the success, this
method may be limited in image sequence applications when
separating out the sparse components that are not consistent
with the low-rank structures [20].

Data-driven approaches include spatially adaptive reg-
ularization to distinguish motion differences for different
regions. This data-driven strategy exploits a spatially adaptive
transformation prior [21], local changes in intensities and
deformation �elds [22], or measures of local image reliabil-
ity [23] to affect the local regularization strength. Recently, an
optical �ow estimation was able to integrate the sparse match
propagation or aggregation [24]�[26] into a global optimiza-
tion framework to estimate the large displacements of small
structures, while a large deformation diffeomorphic metric
mapping [27] was successfully used to address large deforma-
tion problems but was highly in�uenced by the image inten-
sity pro�le with missing correspondences. Nonetheless, these
methods do not fully consider both the outlier structures (i.e.,
missing correspondences and large local deformations) and
motion boundary removal nor do they consider the global-
to-local contextual information of the corresponding saliency
structures in the two images during the registration procedure.

Actually, the corresponding saliency structures [28] convey
the most useful global-to-local contextual information during
image registration. Finding the correspondences between the
corresponding saliency structures is not only the starting point
but also the ultimate goal of image registration. To ef�-
ciently match the structures from outliers, the joint saliency
structures' contextual consistency is exploited in [28] for the
spatially adaptive deformation construction. The idea of the
spatially varying treatment [31] of joint-saliency and outlier
voxels has also been successfully adopted in the feature-based
DRAMMS approach [32] for challenging registration prob-
lems involving pathology-induced outliers. However, there
exists limitation of utilizing a �xed kernel scale (or kernel
width). By determining the sample size of the displacement
vectors participating in the deformation construction, the
sptially varying kernel scale for nonparametric regression
is very important in controlling the balance between the
structure matching accuracy and the smoothness of the local
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deformation �elds. This assumption is con�rmed by the fact
that in density estimation studies in the literature, almost all
the adaptive-scale kernels [33], [40] have been shown to be
superior to �xed-scale kernels.

To design an appropriate kernel scale for JAKR, we assume
that the kernel scale is adaptively selected according to the
contextual information about the underlying structures and
their displacement vectors. Generally, a large structure has
more contextual sample pixels for propagating their defor-
mations to construct the current sample pixel's deformation,
whereas a small structure is con�ned to a small neighbor-
hood to prevent the neighboring structures' distortions from
spreading into the current estimate and smearing the motion
boundaries. Moreover, large mismatches of local saliency
structures require large kernel scales to include more contex-
tual displacement vector samples for the deformation con-
struction, whereas small mismatches of saliency structures
need small kernel scales. Therefore, the kernel scale adap-
tively depends on not only the local size of the underlying
structures to be matched but also the degree of mismatch
between the local structures. Assuming that the mismatches
of the local structures can be appropriately measured by
the edge alignment degree of the structures, we propose an
edge-aware adaptive-scale kernel for edge-aware deforma-
tion construction in JAKR to handle outlier structures and
motion boundaries�two common and dif�cult issues facing
deformable image registration.

With the above-mentioned thoughts in mind, the proposed
method represents three contributions: 1) After presenting
a concise review on structure scale estimation for image
processing, we propose a simple but effective boundary-
aware local structure scale estimator: the estimator �rst
segments the reference image into superpixel-based [34]
multi-resolution structural regions; then, it calculates the
boundary-aware structure scales of these regions in terms
of the local variance of Gaussian smoothing through the
Bayesian estimation and minimal description length crite-
rion (MDL) [35], [36]. 2) We present an edge-aware mis-
match scale of the overlapping structure pairs of two images,
whereby we can judge and control the registration inaccuracy
for the underlying structure pairs during the deformable regis-
tration procedure. 3) We propose an adaptive edge-aware ker-
nel scale by combining the mismatch scale with the structure
scale into the JAKR for deformable image registration. There-
fore, the JAKR with the adaptive-scale kernels (JAKRAK)
can iteratively guide the local structure deformations to not
only achieve the accurate matching of small edge structures
but also maintain smooth deformation �elds for deformable
registration with outliers. The experimental results demon-
strate that the proposed JAKRAK method not only achieves
state-of-the-art intensity-based registration performance but
also achieves the best alignment of all challenging outlier
structures. The background and the proposed method are
elaborated in Section 2 and Section 3, respectively, followed
by the experimental results in Section 4. The whole paper is
discussed and concluded in Section 5.

II. BACKGROUND AND MOTIVATION
A. JOINT-SALIENCY STRUCTURE ADAPTIVE
NONPARAMETRIC REGRESSION
Inspired by the success of nonparametric-regression-
based [37] machine learning for signal reconstruction, we
consider the deformable image registration as a nonpara-
metric regression [28] to construct dense deformation �elds
from discrete deformation �elds. This kernel-regression-
based strategy is also implemented in deformable image
registration [38] and has been recently adopted in optical
�ow estimation [39]. Suppose that we have some sparse and
irregularly distributed deformation vectors{yi, xi}

P
i=1 given

in the form

yi = z(xi)+ ei, xi ∈ �, i = 1, · · · ,P (1)

whereyi is a sparse displacement vector (response variable)
at position (explanatory variable)xi and z (·)001and )001
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FIGURE 2. Multi-resolution flowchart of the proposed algorithm.

Fig. 2, which shows the three-step multi-resolution structure
matching framework, with the different levels having their
own resolutions but following the same procedure. First, the
moving imageIM is deformed with an initial displacement
�eld obtained via spatial interpolation of the output defor-
mation �eld obtained on the previous level. The deformed
moving image and the reference image on the current level are
registered using block matching, with the point-wise mutual
information serving as the local similarity measure. In the
second step, with the JSM highlighting the overlapping JSSs
for the deformation construction, this work estimates the
scale of every reference structure and the scale (or degree)
of mismatch between every pair of the underlying JSSs. With
the anisotropic kernel representing the shape/orientation of
the reference structure, we estimate the edge-aware adaptive-
scale kernels for JAKRAK by combining the structure scale
with the edge-aware mismatch scale; then, we use JAKRAK
to construct the current deformation �elds from the discrete
displacement �elds. Finally, the resulting global deformation
for the iteration at the next level is composed of the initial
deformation and current deformation from sampling the ini-
tial deformation �elds.

B. SCALE ESTIMATION IN NONPARAMETRIC REGRESSION
The kernel scale of the nonparametric regression [37], [40] is
crucial for signal reconstruction when addressing noisy data
and outliers. A small scale corresponds to a smaller moving
kernel for the nonparametric regression and therefore to nois-
ier estimates, with higher variance and typically decreased
estimation bias. A large kernel scale corresponds to smoother
estimates, greater bias, and lower variance. Therefore, the
kernel scale controls the trade-off between the bias and

variance in the local estimation of the nonparametric regres-
sion. The are two types of approaches for kernel scale
estimation in nonparametric regression:Plug-in methods
[37], [40] calculate the ideal scale by estimating the bias
and the variance in the estimation of the mean squared
error (MSE) between the real signal and its approximation.
Thequality-of-�t statistics [37], [40], such as cross-validation
and generalized cross-validation, are widely applied for the
direct optimization of the estimation accuracy. The second
estimation is de�ned by the accuracy criteria and is always
related to data-driven methods disregarding the bias estimates
or formulas for the ideal kernel scale selection, with the main
goal to achieve an optimal accuracy that balances the bias
and the variance of estimation. This work uses this accuracy-
based estimation by taking the local structural matching con-
texts to boost the accuracy of deformable image registration
with outliers.

We note that there are very different scale-estimation prob-
lems for 2D and/or 3D image analysis in pattern recognition
and computer vision, where one goal is to describe the
coarseness (or the optimal size for most spatial structures)
of an image by any monotonically changing parameter. For
example, the gradually changing time parametert used in
the diffusion process [41]�[44] of an image in scale space is
commonly treated as a scale parameter to globally control
the smoothness of the whole image (or gradually remove
the object detail within the image). The single global scale
is widely used in many applications of multi-scale analy-
sis: A single optimum scale [45], [46] based on Laplacian
of Gaussian (LoG) analysis of an image is identi�ed as
the smoothing parameter for a normalized LoG �lter to
delineate blobs with similar sizes in medical images. The
optimal scale based on a pre-estimation of the spatial and
spectral statistics achieves satisfactory segmentation results
with high homogeneity within the segments and high hetero-
geneity between the segments in multi-scale image segmen-
tation [47]. An optimal scalet determines the stopping of
TV-�ow [48]-based diffusion to reduce image noise while
preserving the maximally stable extremal region features
for computer-aided detection. Recently, by decomposing the
images into compact and region-boundary-aware superpix-
els, the structure-guided statistical textural distinctiveness
approach [49] illustrates that considering texture at a single
scale is suf�cient for reliable salient region detection in
natural images. However, the global scale estimation has an
intrinsic limitation: the single coarseness for image structures
in the whole image. The results of this class of algorithms
might not be suf�cient when the underlying �ne and coarse
image structures should be discriminatively analyzed in spa-
tially adaptive schemes.

Rather than assuming a single global scale or multiple
scales for a whole image using prior knowledge of the scales
of the various objects of interest in the image, researchers
always de�ne a local scale to measure the size of local
structures for each location of the image [50]. In estimat-
ing space-variant local scales, linear [41]�[43] and nonlinear
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(such as morphological operations) [51]�[53] scale spaces,
Laplacian and Gaussian pyramids [54] are widely used to
achieve multi-scale image representation. Among the vari-
ous local scale estimation methods, the method proposed by
Lindeberg [50] is widely used for image structures such as
blobs, edges and ridges. The detected local scales may not
have realistic meaning, as they simply detect local extrema
over scales of normalized differential operators for the local
image representation of certain sparse locations. The detected
points, referred to as scale-space extrema, are sparsely dis-
tributed in the image to represent interest points, blobs, cor-
ners, edges, ridges and valleys, and they do not consider the
actual structural information of the whole image. Alterna-
tively, certain methods have utilized probabilistic approaches
to estimate the local scales in an image for edge detection [55]
and other low-level tasks [36] such as texture segmentation.
An original strategy of local meaningful scale [56] detection
relies on the asymptotic properties of perfect shape digi-
tizations to detect what the relevant scales at which each
point of the digital contours should be considered. The local
adaptive scales for local pattern representation and texture
segmentation are also explored in several works by maxi-
mizing the changes between the average gradients for dif-
ferent sizes of image blocks [57] or using total variation
�ows [53], Gabor �ltering [58], and energy minimization
models [59]. Recently, some segment-based scale selection
strategies [60]�[63] have been proposed to determine the
varying sizes of local segments (or regions) in an image
such that all image pixels within a local segment satisfy a
homogeneity or uniformity criterion. However, these local-
segment-based scale estimation methods cannot automati-
cally detect locally varying structures for spatially adaptive
image processing.

As for image registration, most current image registration
and optical �ow approaches implicitly assume that the struc-
tures in both images are from the same scene and appear at the
same scale. Nevertheless, image deformations often occur at
different scales. Recently, Paiet al. [64] proposed multi-scale
�ow-based deformations by exploiting multiple kernels at
different scales. A deformable spatial pyramid matching [65]
was proposed to match pixels across scale differences coming
from a discrete, pre-determined set of scales. The Deep-
Matching [25] approach matched patches at several scales to
overcome the lack of distinctiveness that affects small patches
for optical �ow computations. Tau and Hassner [66] estab-
lished dense correspondences across structures with different
scales to estimate the motion of small structures with large
displacements and occlusions. However, the spatially varying
scales of different geometric structures in the images are not
considered in the above-mentioned works.

The locally adaptive scale in nonparametric regression is
crucial in searching for an appropriate support of the local
estimator for controlling the deformation smoothness and
matching accuracy for the underlying saliency structures.
On the one hand, a kernel scale is assumed to be spa-
tially adapted to the underlying local structures (and their

deformation contexts). For example, the matching of large
local structures can use large kernel scales to reduce the
deformation variance or increase the deformation smooth-
ness compared with matching local small structures using a
small kernel scale to reduce registration (or deformation) bias
errors. Moreover, the nonparametric regression of deforma-
tion �elds may also blur the boundaries and motion details of
structures if using kernels crossing the boundaries between
different structures. By considering a boundary-aware ker-
nel scale in the kernel regression of deformation �elds, we
can preserve the intra-structure deformation smoothness and
avoid inter-structure deformation smearing.

On the other hand, the gradually re�ned deformation
of small-scale structures with relatively large deformations
will be mistakenly predicted by the deformation of large
saliency structures at coarse resolution levels in multi-
resolution registration. To achieve a correct prediction, test-
ing the local structures' matching early in the registration
procedure and as often as possible is the best way to guide
the kernel-regression-based deformation construction toward
accurate structure matching. Assuming that the local struc-
ture's matching can be validated by the alignment degree of
the corresponding edges of the overlapping structures, this
work proposes an edge-aware mismatch scale estimation to
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in Section 3.2 to quantify the mismatch of underlying local
structures.

III. METHODS
A. STRUCTURE SCALE ESTIMATION
The structure scale is considered as the size of every image
structure corresponding to each image segment [60]. With
the image structure being de�ned as a group of connected
pixels with homogeneous features, structure scale estimation
is formulated as a scale labeling assignment for each structure
in optimal multi-scale segmentation, which contains the most
homogeneous structures and the least edge-smearing mixed
heterogeneous structures. To achieve scale invariance, the
structure scale is computed in a neighboring region adaptive
to the local structures in a multi-resolution image pyramid.
Thus, the optimal structure scale refers to the optimal spatial
extent or the optimal size of every local structure at every
pyramid level.

To estimate the structural scales at every pyramid level,
we �rst segment the image of every pyramid level into a
set of superpixel structural units that adhere to the structure
boundaries. We denote the whole image region as8 and the
local structures asSi (i = 1, · · · , n), with 8 =

⋃n
i=1 Si.

The various structure units are then optimally smoothed to
be internally homogeneous by the spatially varying Gaus-
sian �lters, with some variances in a discrete scale space.
The varianceσ 2 of the Gaussian �lter controls the amount
of Gaussian smoothing and thus the homogeneity of each
structural region. With the minimal and maximal amounts of
smoothness being controlled by theσ1 andσm, respectively,
in the discrete scale setσk (k ∈ {1, · · · ,m}), the optimal
structure scale for each smoothed structure unit is obtained
by maximizing its posterior probability from Bayes' theo-
rem. Considering the scale coherence between neighboring
structure units, we also use a Markov Random Field (MRF)
model constraint to create a single large-scale labeling for
the neighboring structure units with similar appearances. The
�nal structure scale estimation is an optimal labeling image,
with its segments achieving the most homogeneity within
structural regions and the least edge-smearing in mixed struc-
tural regions.

Speci�cally, a scale space of the imageI (x) is �rst
constructed by a the convolution operation,Iσ (x) =

(I0 ∗ Gσ ) (x), whereGσ (x) = 1
(2πσ2)

N/2 e−|x|
2/2σ2

denotes

the Gaussian kernel and the varianceσ 2 is a certain scale
parameter from the scale setσk . In this work, we assume that
the largest scale in the scale set is 15 pixels and that the small-
est scale is 1 pixel. Because an image can be decomposed into
a smoothed component and a residual component through an
anisotropic diffusion �lter, the intensity of a local superpixel
Si can be represented by the smoothed componentIσk (Si) and
the residual component

I (x) = Iσk (x)+ εσk (x), x ∈ Si (4)

The residual componentεσk can be modeled as a zero-
mean Gaussian random variable by the central limit theorem.
Thus, the local structure scale estimation assigns a scale
σk , k ∈ {1, · · · ,m} from the scale space generated for each
local structureSi such that the following posterior probability
achieves the maximum value

P (σk | Si) =
P (σk)P (Si| σk)

P (Si)

∝ P (Si| σk) =
∏

p (x| σk), x ∈ Si (5)

whereP (Si| σk) is the likelihood of the observed structural
region Si at scaleσk , and p (x| σk) = P ( I (x)| σk) is the
likelihood of the observed image at each pixelx at scaleσk .

To estimate the likelihood of the observed image at each
pixel, we use the well-known MDL criterion [35], [36] to
relate the probability of an item with the length of the ideal
code used to describe it, namely,

P(I |σk ) = 2−L(I |σk ) (6)

whereL(I |σk ) denotes the description length ofI based on
its decomposition at scaleσk . This description length can be
expressed asL(I |σk ) = L(Iσk )+L(εσk ). On the one hand, the
sampling theorem states that the number of samples needed
for describing a Gaussian smoothed image is proportional to
the Gaussian �lter bandwidth in frequency space. Due to the
uncertainty principle, this bandwidth is inversely proportional
to σ 2

k . Therefore, the number of samples needed for describ-
ing the Gaussian smoothed image is controlled by the spa-
tial variance of the Gaussian kernel. The description length
of the smoothed componentL(Iσk ) is thus assumed [36]
to be inversely proportional toσ 2

k and can be written as
L
(
Iσk

)
∼

1
σ2

k
. On the other hand, because the probability

distribution of the residualP
(
εσk

)
is modeled as a zero-

mean Gaussian distribution, the description length of the
residual componentL

(
εσk

)
= − log2P

(
εσk

)
is proportional

to ε2
σk

. Therefore, the local description length ofI based on
its decomposition at the scaleσk and is estimated as follows:

L(I |σk ) = α(
β

σ 2
k

+ ε2
σk

(x)) (7)

whereα andβ are positive parameters [36] that depend on the
coding precision in bits used to represent the smoothed image
and on the assumed noise variance. Using equation (6), we
further estimatep (x| σk) by the following equation:

p̂(x|σk ) = Ae
[−α( β

σ2
k
+ε2

σk
(x))]

, x ∈ Si (8)

whereA is a normalizing constant, andα andβ are empiri-
cally set to 1 in this work.

The scale �eld for the neighboring similar pixels is
assumed to be inherently smooth due to the intra-structure
homogeneity being usually visible in the natural world.
Considering the scale coherence between similar neighboring
pixels, we implemented the MRF model in the structure scale
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estimation. As a result, the �nal structure scale is estimated
as

σs = arg max
σk

P(σk |Si)

+λ
∑
〈i,j〉

δ(σk , σl) exp(−(µ(Si)− µ(Sj))2)

with δ(σk , σl) =

{
1, if σk = σl

0, otherwise
(9)

wherei, j are the indices of local neighboring structures;µ(Si)
andµ(Sj) are the mean intensities of the local structuresSi
andSj, respectively; andσk andσl are the scales ofSi andSj
from the scale set, respectively. In equation (9), the �rst term
is the posterior probability onSi, and the second term is a
smoothness function of the local structureSi and its neighbor-
ing local structureSj. The second term prefers the same scale
labeling for neighboring pairs of similar superpixel regions
and avoids creating the same scale labeling for neighboring
pairs of very dissimilar superpixel regions. The impact of
MRF is controlled by the parameterλ, which is usually set to a
small value (0.05) to avoid the over-smoothness that increases
the structure scales of small local structures.

In Figs. 3(a)-(b), the reference and moving �ower images
are 384× 288 pixels, having a stamen �lament with both
missing correspondences and large local deformations in
the top-right corner of the images. Figs. 3(f)-(h) show the
superpixel-based structure scales for the multi-resolution
saliency structures. The process roughly segments the fore-
ground structural regions and background regions at the

FIGURE 3. Flower images and their multi-resolution JSM, structure scales,
mismatch scales and kernel scales. (a)-(b) The reference and moving
images at the 384 × 288 pixels resolution. (c)-(e) multi-resolution JSMs,
(f)-(h) multi-resolution structure scales, (i)-(k) multi-resolution mismatch
scales, (l)-(n) multi-resolution kernel scales.

coarse resolution (Fig. 3(f)). With the increasing image reso-
lution reducing the size of the superpixels and enhancing the
image details, a small number of small structure scales are
appropriately assigned to the small structures (e.g., the small
petals, the petal boundaries and the stamen �lament in the
upper-right corner of the reference image in Figs. 3(g)-(h)),
while a large number of moderate structure scales and the
maximal structure scales are displayed for the foreground
structural regions and the homogeneous regions, respectively.

B. MISMATCH SCALE CALCULATION USING JSM
Generally, mismatches often coincide with and are driven
by intensity changes. Speci�cally, homogeneous regions are
always least informative and assumed to continuously have
large areas of smooth intensity variations at the neighbor-
ing pyramid levels; thus, they maintain smooth deformation
�elds and result in the smallest driving in�uences in the
multi-resolution deformation construction. Conversely, edge
structures, with their narrow areas of high contrast and �ne
detail, are most informative in driving the deformations and
are easily changed or bleared during multi-resolution regis-
tration such that their deformation con�icts (and the topology
changes in the structures) can be widely found in the discrete
displacement �elds. Under the above-mentioned consider-
ations, the edge structures' mismatches must be evaluated
during the registration procedure to guide the kernel scale
estimation for the nonparametric regression of the deforma-
tion �elds.

With the JSM representing the matching degree of the
underlying saliency edge structure pairs [28], the mismatch
scales are inversely related to the JSM values for the adaptive
nonparametric regression during the multi-resolution regis-
tration procedure. Figs. 3(c)-(e) show the multi-resolution
edge-aware JSM with the color scale representing different
joint saliency values. The high joint saliency values (in red)
mean that the underlying pixel pairs come from the matched
edge structures (or JSSs), whereas the low JSM values
(blue and yellow-green) are from either unmatched structural
regions (including outlier regions) or homogeneous regions.
At every pyramid level, a zero or very small mismatch scale
value is thus assigned to the corresponding structural regions
with a high JSM value, whereas a large mismatch scale
value is given to the unmatched structural regions with a
low JSM value. Because they contribute the least to driving
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where JS represents the JSM at each overlapping pixel
pair in the two images. The normalized mismatch scales
(Figs. 3(i)-(k)) are thus computed to generally display
three types of regions during the image registration:
zero-mismatch-scale regions (in blue); low-mismatch-scale
regions (in green and yellow-green) being from highly
matched edge structure regions; and high-mismatch-scale
regions (in red), indicating that the underlying regions are
from mismatched structure regions or outlier regions.

C. LOCAL ADAPTIVE KERNEL SCALE
As mentioned above, the mismatch scale of the underly-
ing edge structure pair is estimated to indicate the extent
of possible deformation improvement by the kernel regres-
sion. Speci�cally, the moving saliency edge structures with
high normalized mismatch scales require large deformation
improvements so that the mismatch scales can be used as
weights to linearly enlarge the underlying kernel scales gath-
ering more sparse displacement vector samples for the desir-
able deformation construction. On the other hand, the mov-
ing saliency edge structures with low normalized mismatch
scales need small deformation adjustments to achieve the
desired deformation accuracy. Because the structure scale
already indicates the size of the contextual structure, the
kernel scale is not only proportional to the structure scale
but also weighted by the mismatch scale of the underlying
structure pair. Given the structure scaleσs and the mismatch
scaleσm, we are ready to design the local kernel scaleσd as

σd = max{σs × σm,1} (11)

where 1 avoids the local kernel scale being less than 1 pixel.
Figs. 3(l)-(n) illustrate the local kernel scales for the refer-

ence and moving images (Figs. 3(a)-(b)) for multi-resolution
registration, with the color scale representing different nor-
malized scale values. The large corresponding saliency struc-
tures with their surrounding homogeneous regions cover a
relatively large range of kernel sizes (see the central regions
of Fig. 3(l)) that correspond to the large areas of real image
contents at the coarse resolution. These areas initialize the
smooth deformation construction, while the small saliency
structures at the �ne resolution re�ne these deformations
to increase the matching accuracy. With the small struc-
tures being gradually joined and assigned relatively large
kernel scales in the iterative nonparametric regression, the
background and homogeneous foreground regions gradually
reduce their kernel scales to the smallest values for their
expanding overlapping areas (see Fig. 3(n)) so that the defor-
mation construction can be gradually adjusted to achieve the
transition from deformation smoothness to deformation (or
matching) accuracy.

Meanwhile, the multi-resolution kernel scales of outlier
structures and small saliency structures are mostly dependent
on their mismatch scales (Figs. 3(i)-(k)). Speci�cally, the
outlier structures and the mismatched saliency structures
always have relatively large kernel scales in the multi-
resolution scheme. These relatively large kernel scales for

the mismatched saliency structures and outlier structures
gradually reduce their support regions (see the increasingly
converging regions in the upper-right corners in Figs. 3(l)-(n))
in the image space to achieve the transformation from smooth
deformation to accurate structure matching during the regis-
tration procedure.

According to the aforementioned analysis, the moving
image's local saliency structures are gradually matched to the
corresponding reference structures by iteratively selecting a
locally adaptive scale for the local nonparametric regression.
Fig. 4 illustrates why we prefer the edge-aware adaptive ker-
nel scales to the �xed kernel scale in the proposed JAKRAK
framework. The black stripes in the local `E' pattern at
the top-center region of the hat are small-scale structures
with large local deformations (see the reference and moving
images in Figs. 4(a)-(b)). Figs. 4(e)-(f) show the two zoomed-
in versions of the black stripes for the `E' patterns registered
by the JAKR (Fig. 4(c)) and JAKRAK methods (Fig. 4(d)).
Compared with the JAKR method introducing local irregular
distortion in the stripes, the JAKRAK method can obtain
accurate and smooth deformations of these local stripes.
Figs. 4(g)-(h) present a performance comparison overview of
the mesh deformation process (10-pixel vertex spacing) for
the JAKR and JAKRAK methods with �xed-scale and edge-
aware adaptive-scale kernels. JAKRAK can ensure a smooth
adaptivity of the local mesh deformation to local structures
of varying sizes. Speci�cally, the edge-aware adaptive-scale
kernels for JAKRAK obtain smooth mesh deformations that
are seamlessly consistent with the boundaries of local struc-
tures with varying sizes, while the �xed-scale kernels can
produce more or less irregular mesh deformations that are not
smoothly adaptive to the local structures (see Fig. 4(g)).

FIGURE 4. Performance comparison of using fixed-scale and
adaptive-scale kernels. (a)-(b) The reference and moving images, (c) the
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EMPIRE10 [69]2 data sets have been set up speci�cally
for thoracic image registration. However, these data sets do
not include outlier structures with both missing correspon-
dences and large local deformations for challenging image
registration. The objective and rigorous evaluation of the
performance of challenging image registration is demon-
strated in the work [70] using an in-house database containing
eight patients with recurrent brain tumors. These pathology-
bearing images introduce outliers with both missing corre-
spondences and large local deformations and include two
independent expert decisions on the corresponding landmark
de�nitions and ROIs. Those landmarks and ROIs served as
references for measuring the registration accuracy. However,
due to the HIPPA regulation (Health Insurance Portability and
Accountability Act), this database was publicly unavailable
during the preparation of this manuscript.

Our algorithm has been implemented to support 2D/3D
deformable image registration. In this section, we use
a set of typical challenging 2D image pairs to validate
the performance of the proposed JAKRAK method3 by
comparing it with the JAKR method, SparseFlow method
(SF)4 [26], DeepFlow (DF)5 [25], Advanced Normalized
Tools (ANTs)6 [71] with greedy symmetric normalization
diffeomorphic transformation and mutual information as sim-
ilarity measure (AGS), and �exible variational non-linear
intensity-based (FVNI) method7 [72]. The JAKR, AGS and
FVNI methods have demonstrated [28] state-of-the-art per-
formances for deformable registration on challenging images
with outliers. The parameters of the JAKRAK method are
the same as those of the JAKR method [28] so that all the
algorithms are set with the default parameters for achieving
their best performances.

We use both landmark-based [70] registration error
measurements and visual valuation to fully evaluate the per-
formances of the six competing methods in the seven chal-
lenging image registrations. The landmark-based registration
error measurement task measures the matching accuracy
for the normal corresponding structures in the two images,
while the visual valuation is simply for the outlier structures
with both missing correspondences and large local defor-
mations. Speci�cally, we not only zoom in on some small
local structures in the registered moving images, display-
ing their deviation from the desired locations with several
red crosses, but also manually select a large number of
densely distributed landmark pairs from two experts in the
two images for measuring the registration errors. Considering
the uncertainty of manual landmark selection, we use the
mean registration error (MRE) and standard deviation (SD)
between the landmark pairs as the standard for registration
evaluation.

2http://empire10.isi.uu.nl
3http://www.escience.cn/people/bjqin/research.html
4http://www.vision.ee.ethz.ch/∼timofter/software/SparseFlow.zip
5http://lear.inrialpes.fr/src/deep�ow/
6http://www.picsl.upenn.edu/ANTs
7http://hdl.handle.net/10380/3460

Due to the missing correspondences preventing the corre-
sponding landmark de�nition, the landmark selection cannot
include outlier features with missing correspondences when
focusing on the easily identi�able corresponding locations
at the JSS pairs. Lower average error distances and lower
standard deviations imply a more accurate alignment of nor-
mal local structures. In most cases, the visual valuation can
be perfectly consistent with the landmark-based registration
evaluation. However, due to the inability to de�ne the cor-
responding landmark pairs within and around the outlier
regions with missing correspondences, the landmark-based
registration evaluation cannot fully evaluate the real perfor-
mances of these methods in matching outlier structures. This
limitation is compensated by visually evaluating the zoomed-
in display of the outlier structures in the following section.

The �rst experiment involves aligning two grayscale
Mickey images (Figs. 5(a)-(b)) with an outlier doctoral cap
in the moving image. There are large deformations character-
izing Mickey's left thumb, left hand, right thumb (see the red
boxes in Fig. 5), and right shoe as well as the right button
on Mickey's belly. Therefore, the registration performance
evaluations are largely dependent on the deformation results
of these structures. Figs. 5(c)-(h) show that the JAKRAK
(Fig. 5(c)) and DF methods (Fig. 5(f)) outperform other
methods by perfectly deforming the local structures to the
desired positions. However, the DF method inadequately dif-
fuses the deformation into the wrist of the left hand. The
SF method achieves good structure matching performance
in the corresponding regions but de�cient deformations in
the left thumb, which resulted in a large variance in the
following landmark-based registration evaluation. Obviously,
the FVNI method has introduced a rounding image artifact
around the right button on Mickey's belly. In contrast, the
structure of Mickey's left hand is abnormally distorted by the
AGS (Fig. 5(g)) method.

FIGURE 5. Mickey image registration with missing correspondences and
large local deformations in the upper-right region. The boxed regions
indicate the corresponding small structure regions with large local
deformations. (a)-(b) The reference and moving images, (c) JAKRAK,
(d) JAKR, (e) SF, (f) DF, (g) AGS, (h) FVNI.

The second experiment, displayed in Fig. 6 for �ower
image registration, includes both missing correspondences
and large local deformations of small structures, where the
outlier stamen �lament in the right part of the reference
image (Fig. 6(a)) has large local deformations driven by
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FIGURE 6. Flower image registration with the upper-right outlier regions
of the stamen filament. (a)-(b) The reference and moving images,
(c) JAKRAK, (d) JAKR, (e) SF, (f) DF, (g) AGS, (h) FVNI, (i)-(p) the
corresponding zoomed versions of the red box regions for the stamen
filaments (defined at (a)) in images (a)-(h), with the stamen filaments
having the desired positions indicated by red crosses.

the movement of the center �owers. In addition, some buds
behind the stamen �lament in the moving image (Fig. 6(b))
disappear in the reference image but appear in the moving
image. Except for the AGS method (Fig. 6(g)) introducing
excessive deformations in the bottom petal, the JAKRAK
method and the other methods in Figs. 6(c)-(h) achieve good
registrations, which properly deform the small-scale stamen
�lament and the large-scale petals simultaneously. However,
the zoomed versions of the stamen �laments in Figs. 6(i)-(p)
can be used to distinguish the best performances of the
JAKRAK method (Fig. 6(k)) in matching small-scale struc-
tures from outliers compared with the other methods because
JAKRAK achieves precise structure matching in the tip of
the stamen �lament (in the red cross at the top-right corner).
Although the JAKR, SF and DF methods (Figs. 6(l)-(n)) can
obtain smooth registrations around the stamen �lament, they
are unable to achieve the desired large deformations in the tip
of the stamen �lament. Figs. 6(o)-(p) show that the AGS and
FVNI methods introduce more or fewer artifacts and unac-
ceptable deformations around the stamen �lament. Due to
the subsequent landmark-based evaluation having dif�culty
in de�ning suf�cient landmarks in the small-scale structures,
the zoomed-in display of the visual evaluation performs better
than the landmark-based evaluation in evaluating the chal-
lenging registration of small-scale structures with missing
correspondences and large deformations.

A more challenging experiment is shown in Fig. 7, where
the hat distortion deformed all the letters, with the black
stripes in `E' in particular having large local deformations.
Moreover, the missing `I' in the reference image (Fig. 7(a))
appears in the moving image (Fig. 7(b)). The main chal-
lenge in this experiment lies in the reasonable alignment
of local small-scale structures such as the stripes in `E'.
Because many tiny structures are close to each other, one
structure's mismatching will directly affect the deformations

FIGURE 7. Hat image registration with the large local deformations of
thin strips. (a)-(b) The reference and moving images, (c) JAKRAK, (d) JAKR,
(e) SF, (f) DF, (g) AGS, (h) FVNI, (i)-(p) the zoomed versions of the boxed
regions (defined at (a)) in images (a)-(h), with the thin stripes having the
desired positions indicated by red crosses.

of its neighboring local tiny structures and thus lead to poor
structure alignment in a certain region. Figs. 7(c)-(h) show
the registered moving images obtained by the six methods.
The zoomed versions (Figs. 7(i)-(p)) of the stripes of `E'
demonstrate that only the JAKRAK, DF and SF methods
((Figs. 7(k), (m), (n))) accurately match every small-scale
structure (e.g., in the red crosses) of the stripes, whereas the
JAKR, AGS and FVNI methods introduce excessive distor-
tions in the stripes of `E'.

Four experiments involving matching pre- and post-
operative brain tumor resection images were performed.
In these experiments, surrounding normal brain tis-
sues suppressed by tumor in the preoperative image
(Figs. 8(1-a)-(1-b), 8(2-a)-(2-b)) expand after tumor resec-
tion, which introduces not only the missing correspondences
of the tumor in the post-operative images but also the large
local deformations caused by the brain shift. A desirable
registration method should smoothly deform the tumor region
and surrounding preoperative brain tissues (see the red boxes
in Fig. 8) according to the post-operative image struc-
tures regardless of tumor resection. Figs. 8(1-c)-(1-h) and
(2-c)-(2-h) are the registration results of the JAKRAK, JAKR,
SF, DF, AGS and FVNI methods. In general, visual inspection
shows that the JAKRAK and JAKR methods apparently
perform better than the other four methods. Due to the
intensity-based driving force having unexpected effects on
the brain tumor resection regions, the AGS and FVNI (Figs.
8(1-g)-(1-h), 8(2-g)-(2-h)) methods produce more or less
excessive deformation diffusions within the tumor region
and/or some non-smooth distortions across the tumor region
boundaries (e.g., in the red boxes or in the red arrows), while
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the SF and DF methods introduce some artifacts in certain
edge structures (red arrows in Figs. 8(1-e)-(1-f)) as well as
produce an inappropriate and/or insuf�cient contraction of
the tumor region and surrounding brain tissues (red boxes in
Figs. 8(2-e)-(2-f)). Some diffusion artifacts are clearly dis-
played in the results of the FVNI method (Figs. 8(1-h) and
(2-h)).

FIGURE 8. Two cases of brain tumor image registration. The red arrows
indicate unrealistic distortions and/or some artifacts in the results.
(1-a)-(1-b) and (2-a)-(2-b) The reference and moving images,
(1-c)-(2-c) JAKRAK, (1-d)-(2-d) JAKR, (1-e)-(2-e) SF, (1-f)-(3-f) DF,
(1-g)-(2-g) AGS, (1-h)-(2-h) FVNI.

Table 1 demonstrates the landmark-based evaluation of
all these methods in the above experiments. Although the
landmark-based evaluation is unable to re�ect the matching
performances of the methods for the outlier structures, Table
1 compares the matching accuracy for the normal correspond-
ing structures in terms of the average registration errors, with
standard deviations of approximately 40-50 landmarks.

TABLE 1. Landmark registration errors (Mean+SD) of the six methods for
the corresponding structures in the images. The registration errors
printed in italic indicate that these methods produced unrealistic artifacts
in the deformable registration results according to visual inspection,
whereas the registration errors printed in bold indicate the methods that
achieved excellent performances in terms of both visual inspection and
landmark-based evaluation.

The JAKRAK method achieved satisfying registration
performances for all seven experiments, with registration
errors of (1.23±0.81, 0.91±0.59, 0.93±0.81, 0.91±0.64,

0.93±0.63, 0.97±0.58, 0.89±0.55), while the registration
errors of the DF, SF, JAKR and AGS methods are approx-
imately (1.11±0.51, 0.92±0.83, 0.92±0.66, 0.98±0.71,
0.93±0.52, 0.97±0.62, 0.96±0.62), (1.25±1.23, 0.95±0.68,
0.93±0.82, 1.13±0.87, 0.92±0.68, 1.05±0.57, 0.99±0.59),
(1.43±0.87, 0.97±0.81, 1.16±0.85, 0.96±0.63, 0.96±0.61,
1.02±0.74, 0.92±0.58) and (1.86±1.37, 1.08±0.92,
1.05±0.79, 0.91±0.61, 1.01±0.53, 1.15±0.73, 0.94±0.63),
respectively. The FVNI method cannot perform well in three
cases of these seven challenging image registrations. The
landmark-based registration errors printed in italic indicate
that these methods produced unrealistic distortions and/or
artifacts in the deformable registration results based on visual
inspection (Figs. 5-8). Nevertheless, the registration errors
printed in bold indicate that these methods achieved excel-
lent performances in terms of both visual inspection and
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to achieve a steady transition from smooth deformation to
accurate structure matching during the registration procedure.

In general, the JAKRAK method is an effective
deformation construction method for accurately matching
small structures and outlier structures with smooth defor-
mations compared with state-of-the-art methods. Many other
deformable image registration methods for establishing accu-
rate structure correspondences exist and may conceivably be
used instead of the block matching method with JAKRAK
for challenging image registration with missing correspon-
dences and large local deformations. The challenging 2D/3D
deformable image registration problem with missing cor-
respondences and large local deformations is well known
to be far from solved in many research �elds. At present,
there is no doubt that methods and algorithms from intel-
ligent computing and machine learning for addressing this
challenging outlier problem in deformable image registra-
tion are in high demand. Furthermore, we believe that fur-
ther experimental studies are required to build ground truth
2D/3D image datasets with outlier structures.
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