
IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 29, 2020 2845

Phase Asymmetry Ultrasound Despeckling
With Fractional Anisotropic Diffusion

and Total Variation
Kunqiang Mei, Bin Hu, Baowei Fei, and Binjie Qin , Member, IEEE

Abstract— We propose an ultrasound speckle filtering method
for not only preserving various edge features but also filtering
tissue-dependent complex speckle noises in ultrasound images.
The key idea is to detect these various edges using a phase
congruence-based edge significance measure called phase asym-
metry (PAS), which is invariant to the intensity amplitude
of edges and takes 0 in non-edge smooth regions and 1 at
the idea step edge, while also taking intermediate values at
slowly varying ramp edges. By leveraging the PAS metric in
designing weighting coefficients to maintain a balance between
fractional-order anisotropic diffusion and total variation (TV)
filters in TV cost function, we propose a new fractional TV
framework to not only achieve the best despeckling performance
with ramp edge preservation but also reduce the staircase effect
produced by integral-order filters. Then, we exploit the PAS
metric in designing a new fractional-order diffusion coefficient
to properly preserve low-contrast edges in diffusion filtering.
Finally, different from fixed fractional-order diffusion filters,
an adaptive fractional order is introduced based on the PAS
metric to enhance various weak edges in the spatially transitional
areas between objects. The proposed fractional TV model is
minimized using the gradient descent method to obtain the final
denoised image. The experimental results and real application of
ultrasound breast image segmentation show that the proposed
method outperforms other state-of-the-art ultrasound despeck-
ling filters for both speckle reduction and feature preservation
in terms of visual evaluation and quantitative indices. The
best scores on feature similarity indices have achieved 0.867,
0.844 and 0.834 under three different levels of noise, while the best
breast ultrasound segmentation accuracy in terms of the mean
and median dice similarity coefficient are 96.25% and 96.15%,
respectively.

Index Terms— Ultrasound despeckling, speckle noise,
fractional-order diffusion filter, fractional-order TV filter, edge
detection, phase congruency, phase asymmetry, image denoising.
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I. INTRODUCTION

CURRENT advanced image denoising [1], [2] and image
enhancement algorithms [3], [4] are developed to solve

the difficult and urgent open problems of feature preserva-
tion in the removal of complex signal-dependent noises for
challenging real applications. In these recent research devel-
opments, feature-preserving ultrasound despeckling [5], [6] is
most desired in clinical applications due to the ubiquity of
the ultrasound imaging modality given its noninvasiveness,
low cost and convenience; however, its quality is relatively
poor compared with other medical imaging modalities. The
main reason for quality degradation in ultrasound images is the
presence of an inherent imaging artefact called speckle, which
results from constructive and destructive coherent interferences
of backscattered echoes from the scatterers [5]–[7]. Speckle is
commonly interpreted as a locally correlated noise that reduces
image contrast and conceals fine feature details [8], causing
negative effects on medical diagnosis and reduction of the
accuracy of subsequent image processing such as segmen-
tation and registration [7]. Furthermore, extracting coherent
feature patterns from the noisy ultrasound signals is necessary
for super-resolution ultrasound microvessel imaging [9] and
3D reconstruction from a series of 2D freehand ultrasound
images [10]. Therefore, it is very important to remove speckle
noise with satisfactory feature preservation for accurate diag-
nosis and analysis in many applications.

However, feature-preserving speckle reduction is a challeng-
ing task, since speckle noise is known to be tissue-dependent
and it manifests itself in the form of multiplicative noise,
which means that the intensity of speckle can change sharply
and the intensity of variance of speckle is comparable to
or even larger than that of the features [11]. Therefore,
simply employing intensity-based gradient information cannot
accurately distinguish edges from speckle noise, especially for
low-contrast edges. Failing to preserve various edges will dam-
age other features of structures (or shapes) whose boundaries
are composed of the edges. Existing edge-preserving image
processing techniques [13], [14] are likely to damage some
low-contrast features, since they regard some low-contrast
edges as speckle noise and remove these edges after noise
removal by exploring intensity-based gradient information.

Various speckle reduction filters are proposed to solve the
abovementioned challenges, including local adaptive filters,
non-local means (NLM) filters and diffusion filters. The
local adaptive filters such as Frost [14] filters and bilateral
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filters [15] rectify a pixel by averaging its neighbouring pixels.
In their experimental comparison, Chen et al. [16] indicated
that the bilateral filtering is not as good as the other methods
such as diffusion filters for the edge preservation in ultrasound
images. Moreover, the squeeze box filter (SBF) [17] rectifies
only local extrema at each iteration by replacing them with
the local mean. However, these local adaptive filters are
sensitive to the shape and size of local windows. The NLM
algorithms assume that natural images contain many similar
features. NLM algorithms group similar features from different
image patches and remove noise by a weighted average of
similar features. Coupe et al. [18] proposed the optimal
Bayesian NLM (OBNLM) filter to process ultrasound images
in non-Gaussian speckle noise circumstances. An improved
OBNLM filter is proposed by Zhou et al. [19] to iteratively
refine the filtering model by deducing the key probability
density function according to the statistical characteristic of the
speckle noise. Recently, Zhu et al. [20] developed a non-local
low-rank framework (NLLRF) for ultrasound speckle reduc-
tion, which leverages a guidance image to improve the perfor-
mance of patch selection. However, NLM algorithms usually
mix different features into the same patch cluster in the case
of a large number of features, causing some important details
to become indiscernible after noise removal [21].

In regard to diffusion filtering, after Perona and Malik
proposed the well-known anisotropic diffusion (AD) fil-
ter [22], both the speckle reducing anisotropic diffusion
(SRAD) [23] filter and the detail preserving anisotropic diffu-
sion (DPAD) [24] filter have been modified based on the AD
filter. The SRAD filter added a parameter related to the noise
estimate into the diffusion coefficient, while the DPAD filter
adopted an improved noise estimator to improve the despeck-
ling performance. The oriented speckle reducing anisotropic
diffusion [25] filter modified the diffusion coefficient with the
local directional variance of the image intensity. Using an
edge indicator to distinguish between sharp and ramp edges in
images, Chen et al. [16] proposed to adaptively determine the
diffusion coefficient for introducing isotropic diffusion in flat
and ramp regions and anisotropic diffusion in sharp edges for
medical images. Using the information about image gradient
and grey levels of the image, a doubly degenerate diffusion
model [26] with robust speckle reduction performance [27] is
proposed to remove multiplicative noise. However, all of these
diffusion filters employ the local intensity-based gradient or
grey level information to identify edges, failing to detect and
preserve low-contrast edges. Moreover, the gradient difference
between sharp edges and ramp edges is not obvious, and
therefore anisotropic diffusions based on the image gradient
are prone to cause the staircase effect in the regions of ramp
edges. To reduce the staircase effect, Bai and Feng [28]
proposed a fixed fractional-order AD (FAD) model for image
denoising. Nevertheless, the fixed fractional-order diffusion
filter neglects the differences among various image regions.
Recently, Flores et al. [8] developed an anisotropic diffusion
filter guided by the log-Gabor filters (ADLG) instead of the
intensity-based gradient. However, ADLG fails to achieve
satisfactory feature preservation. Based on nonlinear AD for
filtering noisy coefficients in the transform domain, some

wavelet [29] and shearlet-based [30] transform-domain filter-
ing approaches are combined with AD to exploit the advan-
tages of multi-resolution analysis, noise removal and edge
preservation. However, these methods have a high computa-
tional cost due to the transformation and anti-transformation
steps and may insert or manipulate artificial frequencies in the
recovered image.

Essentially, edge detection and image denoising depend
on each other, leading to a “chicken-or-the-egg” causality
dilemma in ultrasound despeckling. The abovementioned dif-
fusion filters that fail to accurately identify edges from speckle
noises cannot achieve satisfactory feature preservation after
speckle filtering. As an important image feature, the edge is a
basic element of other features, such as ridges, valleys, textures
and boundaries of structures, such that failing to preserve
the edges will render these structure features inviable [31].
Therefore, robustly detecting the edge from the noisy image
is half the battle of ultrasound despeckling. To solve the
drawback of local methods [32] that use local intensity infor-
mation for edge detection, Ofir et al. [33] consider the edge
detection as a search approach in a large set of feasible
curves by hierarchically constructing difference filters that
match the curves traced by the sought edges. However, this
method has a high computational cost on large and noisy
images containing long edges and has a great limitation
in searching weak irregular texture boundaries [2] in noisy
images. Cogranne et al. [34] implement edge detection as a
regression problem with a regression surface based on local
image content model. Such an idea of transferring image
processing into searching a regression’s coefficients from the
context information of a neighbourhood area is successfully
and widely used in image denoising [35], image reconstruc-
tion [36], image registration [37], [38], and so on. However
the computation of the regression’s coefficients for indicating
the edges’ presence is still sensitive to the sharp change of
local intensity information in the presence of multiplicative
noise.

To solve the drawback of intensity-based edge detectors,
some local phase-based edge detection methods [39], [40]
were developed in ultrasound imaging. In analytically rep-
resenting images using spatially varying sinusoidal waves,
the local phase informs us about the location and orienta-
tion of image features, while the amplitude provides only
information on their intensity. More specifically, local phase
is an illumination and contrast-invariant measure of feature
significance based on a model of feature perception called the
local-energy model developed by Morrone et al. [41], [42].
This model postulates that features are perceived at points
in an image, where the Fourier components are maximally
in phase. A wide range of feature types give rise to points
of high-phase congruency. These include step edges, line and
roof edges, and Mach bands. The first local phase-based work
for successfully detecting the boundary in echocardiographic
images is from Mulet-Parada and Noble [43]. We then use
the method introduced in [44] to construct a phase congru-
ency (PC)-based feature indicator called phase symmetry (PS)
and phase asymmetry (PAS, all acronyms in this paper are
listed in Table I) depending on the image feature type to
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decomposition method. In the past decades, there has been an
increasing interest in decomposing multidimensional signals
using spatially varying sinusoidal waves. As the understanding
of the theory advanced, amplitude- and frequency-modulation
(AM-FM) decompositions [48]–[50] have been applied in a
large range of problems, for example, ultrasound image texture
analysis [51], ultrasound image segmentation [40] and medical
imaging [52]. The monogenic signal [53] was proposed to
decompose the 2D signal f into the local phase and local
amplitude based on Riesz filters. The monogenic signal fM is
defined as: fM = ( f, fR) = ( f, r1 ∗ f, r2 ∗ f ), where fR is the
Riesz transform of f , r1(x1, x2) and r2(x1, x2) are the spatial
representation of Riesz filters, shown as follows:

r1(x1, x2) = −x1

2π
�
x2

1 + x2
2

�3/2

r2(x1, x2) = −x2

2π
�
x2

1 + x2
2

�3/2 (1)

Since natural images generally contain a wide range of
frequencies, the monogenic signal fM needs to be combined
with a set of bandpass quadrature filters b. The monogenic
signal fM becomes fM = (b ∗ f, b ∗ r1 ∗ f, b ∗ r2 ∗ f ) =
(es, os), where es and os denote the scalar-valued even and
vector-valued odd filter responses respectively.

Several families of bandpass filters b have been proposed
to calculate the es and os; we adopt a Cauchy kernel as
the bandpass filter, since the Cauchy kernel has an analytical
expression in the spatial and the Fourier domain [54]. In the
frequency domain, the 2D isotropic Cauchy kernel is defined
by the following:

C(w) = nc |w|a exp (−s |w|) , a ≥ 1 (2)

where w = (w1, w2) is the angular frequency, s is the scaling

parameter, nc =
�

π 4a+1 s2a+1

�(2a+1)

� 1
2
, � (·) is the gamma function,

and a is the bandwidth. We set a = 1.58, as suggested in [39].
To identify different edges accurately, Kovesi [44] suggested

to use the PAS measure over a number of scales. Therefore,
we define the multiple-scale PAS as follows:

P A =
�

s

�|os | − |es | − Ts��
e2

s + o2
s + ε

(3)

where P A is the PAS metric, ε is a small positive constant to
avoid division by zero, Ts is the scale-specific noise threshold,
�·� represents zeroing of negative values, and s is the scaling
parameter of Cauchy kernels. Specifically, s plays an important
role in obtaining an accurate edge map, since increasing s
will regularize the continuity (or connect the breakpoints)
in the boundaries but slightly lose details somewhat in edge
detection.

Fig. 1 shows an example of the PAS measure at different
scales. We can find that the discontinuities in some boundaries
in the PAS maps at s = 5 and s = 10 will reduce the accuracy
of locating edges. The boundaries in the PAS maps at s = 20
and s = 25 have good continuity, but some details are lost.
The PAS map at s = 15 maintains a balance between the
boundary continuity and detail preservation. Thus, we choose
s = 15 to detect edges in real ultrasound images.

Fig. 1. Example of PAS measure at different scales. (a) The ultrasound
image of the spleen; the PAS map of: (b) s = 5, (c) s = 10, (d) s = 15,
(e) s = 20, (f) s = 25.

PAS provides an absolute measure of the edge significance
of points. The PAS metric varies from 0 to 1, taking 0
(indicating non-edge significance) in ideal smooth regions
and taking 1 (indicating high edge significance) at sharp step
edges. In general, points at the same edge have a similar edge
significance. As the steepness of a step edge reduces, the PAS
values of the edge points also reduce. Due to PAS being
invariant to brightness or contrast, low-contrast edges can be
detected efficiently. For the real ramp edges in ultrasound
images, the PAS values of these edge points are less than 1.

B. Fractional-Order Differential

The fractional-order differential performs better in enhanc-
ing edges than integer-order differential during image process-
ing [47]. For a square differentiable signal f (x) ∈ L2(R), its
fractional-order differential is given as follows:

Dα f (x) = dα f (x)

d xα
(4)

where α is a positive real number. The Fourier transform of
Dα f (x) is as follows:

Dα f (x)
FT⇔ (D̂

α
f )(w) = (iw)α f̂ (w)

= |w|α exp
�
i θα(w)

	
f̂ (w)

= |w|α exp



απ i

2
sgn(w)

�
f̂ (w) (5)

where w is the angular frequency, sgn(·) denotes the numeric
symbol of the integer part, and (iw)α = |w|α exp

�
απ i

2 sgn(w)
	

is the filter function of the fractional differential filter. Accord-
ing to the filter function, we can draw the curves of the
amplitude-frequency characteristic of the fractional differential
with different α, as depicted in Fig. 2. From Fig. 2, it is
obviously seen that in the low-frequency field with 0 < w < 1,
the fractional differential acts as an attenuation function. Nev-
ertheless, in the section with w > 1, the fractional differential
enlarges the amplitude values, and the enhanced amplitude
will be stronger as the fractional order α increases. Taking
into account the amplitude enhancement in the high-frequency
field, we effectively apply the fractional-order differential into
edge enhancement in image denoising.

Diffusion filters tend to reduce the edge contrast dur-
ing smoothing. Although traditional fractional-order diffusion
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Fig. 2. The curves of the amplitude-frequency characteristic of the fractional
differential with different orders.

filters usually adopt one fixed fractional order to process
the image, this strategy neglects the differences between
smooth regions and the various edges in spatially transi-
tional border regions [47]. Edges will be weakened if a
low-fractional order is used, while smooth regions will be
ignored if a high-fractional order is adopted. This drawback
will inevitably cause some details to be damaged after noise
removal [46]. Therefore, a more reasonable choice is to assign
the fractional-order α adaptively based on the PAS metric as in
Sec. III-A for enhancing various edges in ultrasound images.

Currently, there are three commonly used definitions of frac-
tional calculus: the Capotu definition, the Grünwald-Letnikov
(G-L) definition and the Riemann-Liouville (R-L) [55], [56].
Since the G-L definition expresses a function using the
weighted sum around the function, the G-L definition is
suitable for signal processing. According to [57], the α-order
differential of signal f (x) is defined by the G-L as follows:

Dα f (x)
�= lim

h→0

1

hα

[ d−c
h ]�

l=0

(−1)l
�

α
l



f (x − lh) (6)

where α is the fractional order, [c, d] is the duration of f (x),

the integer part of d−c
h is [ d−c

h ], and the formula

�
α
l



is the

binomial coefficient defined as follows:�
α
l



= �(α + 1)

�(l + 1)�(α − l + 1)
(7)

where �(n) = (n − 1)! is the gamma function.

C. Fractional-Order AD Filter and Fractional-Order
TV Filter

The following partial differential equation defines the orig-
inal AD [22] filter:

∂u

∂ t
= div [c (|∇u|) · ∇u] , (8)

where div is the divergence operator, |∇u| is the absolute
value of ∇u, and c(·)

秦斌杰
Highlight



2850 IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 29, 2020

the value of λ is, the more noisy the filtered image achieves;
the smaller the value of λ is, the more blurry the edge feature
becomes. Two types of regularization parameter selection
methods have been introduced in terms of locally-adaptive and
global performance measures. In this paper, the parameter λ
is chosen so that the best global PSNR of despeckled image
is obtained [60]. We empirically set λ as 0.01 after synthetic
image despeckling experiments. Regarding the weighted coef-
ficients, we design them based on the PAS metric shown as
follows: �

ϕ = (P A − 1)2

γ = P A(2 − P A)
(15)

where P A is the PA metric that is updated in each iteration
for accurately obtaining the edge significance of each point.

Based on the above strategy, when P A is close to 0,
we emphasize the role of the FAD filter in smoothing regions.
When P A is close to 1, we highlight the role of the FTV filter
in the boundary regions for edge preservation. Because the
P A values of edge points for real ramp edges are less than 1,
the FAD filter also plays a key role in processing these weak
edges in the spatially transitional border regions.

However, the FAD filter solely integrates intensity-based
gradient into the diffusion coefficient, causing some
low-contrast edges to be removed after noise removal. To over-
come this drawback, we integrate the PAS metric into the
diffusion coefficient. The PAS measure can efficiently identify
low-contrast edges due to its invariance to brightness or
contrast. Furthermore, the PAS metric value is only related
to the edge significance of each point. We alter the function
f (|∇α u|) by modifying its diffusion coefficient c(·) according
to (12). The modified diffusion coefficient is shown as follows:

c
���∇αu

�� , P A
� = 1/

�
1 + |∇αu| · (1 + 254 · P A)

k2
1

�
(16)

where k1 = k0 e−0.05(niter −1) is the modified version of k in (9).
Here, niter is the number of iterations, and k0 is a positive
constant that is related to the noise level.

Given that diffusion filters reduce the edge contrast during
smoothing, it is essential to design a proper strategy to
enhance various edges in an ultrasound image. According to
the discussion in Sec. II-B, we can set the fractional-order α
as a monotone increasing function of the PAS value of the
ultrasound images to adaptively enhance the various edges in
the ultrasound images. Specifically, we adopt a logarithmic
function to describe the adaptive adjustment of the order of
fractional derivative by modifying the adaptive fractional-order
strategy in [46] as follows:

α = 1 + log2

�
1 + P A2

�
(17)

where P A is the PAS metric. This functional setting ensures
that α ∈ (1, 2). The adaptive strategy of the PFDTV method
assigns low-fractional order to preserve smooth regions and
uses high-fractional order to enhance the various edges in
spatially transitional border regions.

In fact, the PAS metric shows the edge significance of each
point. As the PAS value increases, the edge significance of

the point also increases and the point is more likely to be
an edge point. According to (17), a larger PAS metric yields
a larger α that can produce better edge enhancement. The
PFDTV method will adopt relatively high-fractional order to
enhance the most significant edge points compared with the
least significant edge points, so that we can properly preserve
various edges and obtain a better image enhancement.

B. Numerical Solver

We leverage the Euler-Lagrange equation [61] to solve
the cost function (14). Assuming the solution u of this cost
function E(u) is known, then this solution must make E(u)
minimum. In other words, adding any slight perturbation to
u will make the cost function larger. When the perturbation
goes to 0, the derivative of the cost function with respect
to the perturbation is 0. The perturbation is represented as
a very small continuous function η ∈ C∞ (	) multiplied by a
perturbation factor e. Define the following:

� (e) := E (u + eη)

=
�

	

�
ϕ f
���∇α (u + eη)

���+ γ
��∇α (u + eη)

��	dxdy

+
�

	

�
λ

2
|u + eη − u0|2



dxdy (18)

We first take the derivative of �(e) and obtain the following:

�
 (e) = d

de
� (e)

= ϕ

�
	

⎛
⎜⎜⎝f 
 ���∇α (u+eη)

���

×∇α
x (u+eη)∇α

x η+∇α
y (u+eη) ∇α

y η��∇α
x (u+eη)

�2+�∇α
y (u+eη)

�2

⎞
⎟⎟⎠ dxdy

+ γ

�
	

⎛
⎜⎜⎝∇α

x (u+eη)∇α
x η+∇α

y (u+eη)∇α
y η��∇α

x (u+eη)
�2+�∇α

y (u+eη)
�2

⎞
⎟⎟⎠dxdy

+λ

�
	

(u+eη − u0)ηdxdy, (19)

Let e = 0, and we have the following:
�
 (0)

= ϕ

�
	

�
c
���∇α u

��2, P A2
� �

∇α
x u ∇α

x η + ∇α
y u ∇α

y η
��

dxdy

+γ

�
	

∇α
x u ∇α

x η + ∇α
y u ∇α

y η

|∇α u| dxdy

+λ

�
	

(u − u0)ηdxdy (20)

where |∇α u| =
��∇α

x u
�2 +

�
∇α

y u
�2

. According to the

previous analysis for finding the solution u, we can obtain
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TABLE II

COMPARISON OF THE PSNR, MSSIM AND FSIM VALUES AMONG DIFFERENT FILTERS
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Fig. 4. Example of the despeckled image of different k0. (a) The original
ultrasound image; the despeckled result of (b) k0 = 5, (c) k0 = 20,
(d) k0 = 100.

a lower image distortion compared with other filters. The
highest MSSIM represents that the despeckled image of our
method is most similar to the original image. The highest
FSIM represents that the PFDTV method outperforms other
filters in feature preservation.

B. Clinical Image Experiment

Since real ultrasound images are all affected by speckle
noise, there are no ground truth image and gold standard for
quantitative performance evaluation on real ultrasound images.
Therefore, we employed different types of clinical ultrasound
images to visually verify the performance of the PFDTV
method. The clinical ultrasound images were all downloaded
from the public dataset.3

The real ultrasound image experiment has no ground truth
image and gold standard to find the optimal parameters in
terms of quantifiable performance criteria. Thus, we adjust
the parameters of the PFDTV method to obtain the best
visual effect. The visual performance of our method is closely
associated with three parameters: s, k0 and niter . According
to the analysis in Section II-A, we set the scale s
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Fig. 6. Despeckled results of the ultrasound image of liver trauma and the corresponding zoomed details. (a) The original image; results by (b) Frost,
(c) SRAD, (d) OBNLM, (e) SBF, (f) ADLG, (g) NLLRF, and (h) PFDTV.

Fig. 7. Despeckled results of the ultrasound image of hepatitis and the corresponding zoomed details. (a) The original image; results by (b) Frost, (c) SRAD,
(d) OBNLM, (e) SBF, (f) ADLG, (g) NLLRF, and (h) PFDTV.

the streak after speckle reduction. Similarly, according to the
nodules indicated by the red arrow in Fig. 7, the PFDTV
method succeeds in enhancing the local contrast. SRAD,
OBNLM and NLLRF reduce the contrast of the nodules
heavily. Other filters remove the nodules after despeckling.

To more closely evaluate despeckled images of different
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pixels can be exploited to boost the performance of the
feature-preserving ultrasound speckle filtering. In our pre-
vious work of texture-preserving nonlocal image denois-
ing [2], the proposed ACVA method achieves excellent
texture-preserving Gaussian and Poisson-Gaussian denoising
performance both quantitatively and visually. Thus, an impor-
tant future direction is to develop a nonlocal [78], [79] version
of the PFDTV method for enhancing the texture preservation
in ultrasound despeckling.

Image denoising can also be considered as local and nonlo-
cal regression problem [35], [76], [80] that reconstucts the ori-
gial signal from local and nonlocal noisy measurments. Most
importantly, 3D ultrasound imaging [7], [81] has benefitted a
lot from deep learning methods, where deep encoder-decoder
architectures serve as a general model for many regression
problems and are widely used in computer vision and medical
imaging. However, the large flexibility and capacity of deep
learning architectures can make them overparameterized for
removing the complex speckle noise from ultrasound image.
Therefore, how to develop generative adversarial network
and/or fractional-order deep network [82] to deal with the
statistical characteristic of the signal-dependent speckle noise
for improving computational efficiency and accuracy will be
interesting research topics in future.

This paper uses the setting of fixed scale s to simplify our
ultrasound despeckling computation without sacrificing sig-
nificant despeckling performance when the fixed scale being
integrated with adaptive fractional order during ultrasound
despeckling. The solely setting of fixed scale [39] delivered a
less satisfactory performance compared with updating optimal
scale for each iteration during ultrasound despeckling. Future
work will explore updating scheme with locally adaptive
estimation of optimal scale that characterizes the intrinsic local
salient structure [38], [39] in ultrasound images.

In conclusion, we have proposed a phase asymmetry guided
adaptive fractional-order TV framework combining FAD and
FTV filters to achieve feature-preserving ultrasound despeck-
ling. Synthetic and clinical ultrasound image experiments
indicate that the proposed fractional-order TV filter outper-
forms other well-known ultrasound despeckling filters in both
speckle reduction and feature preservation.
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