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Motion-Robust Multimodal Heart Rate Estimation
Using BCG Fused Remote-PPG With Deep Facial
ROI Tracker and Pose Constrained Kalman Filter
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Abstract— The heart rate (HR) signal is so weak in remote
photoplethysmography (rPPG) and ballistocardiogram (BCG)
that HR estimation is very sensitive to face and body motion
disturbance caused by spontaneous head and body movements
as well as facial expressions of subjects in conversation. This
article proposed a novel multimodal quasi-contactless HR sensor
to ensure the robustness and accuracy of HR estimation under
extreme facial poses, large-motion disturbances, and multiple
faces in a video for computer-aided police interrogation. Specif-
ically, we propose a novel landmark-based approach for a deep
facial region of interest (ROI) tracker and face pose constrained
Kalman filter to continuously and robustly track target facial
ROIs for estimating HR from face and head motion disturbances
in rPPG. This motion-disturbed rPPG signal is further fused
with a minimally disturbed BCG signal by the face and head
movements via a bank of notch filters with a recursive weighting
scheme to obtain the dominant HR frequency for final accurate
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Fig. 1. Examples of typical ECG, PPG, and BCG physiological signals with
high correlation among their peak-to-peak intervals.

that is ejected and moved during each cardiac cycle [4]. The
BCG signal is a combination of cardiac activities, respiratory
activities, and body movements such that the BCG signal can
simultaneously reveal a person’s HR and RR. In addition to the
BCG technique, the rPPG-based method is an emerging branch
of PPG, which is a simple and low-cost video-based biomon-
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motion disturbances as well as different movement types
introduced in the data set.

This article is organized as follows. We review the related
works on contactless HR estimation in Section II. The design
of DFT and pose constrained ROI landmark KF for rPPG as
well as motion-artifact correction via BCG fusion are pre-
sented for HR estimation in Section III. An illustration of the
experimental results is presented in Section IV. Conclusions
and discussions on our work are presented in Section V.

II. RELATED WORKS

HR estimation based on rPPG needs to track several areas
of facial skin, such as the forehead and cheek regions, which
are denoted as ROIs, to obtain high-quality rPPG signals [12].
Subsequently, the light intensities of the spatially averaged
pixel values in the facial ROIs are filtered to recover the
rPPG signal. However, when the suspect’s face, head, and
body move, it is more difficult to extract HR signals from
the contactless rPPG compared to contact PPG measurement
methods for the following reasons: 1) it is difficult to ensure
that face ROIs are always correctly identified and tracked in
rPPG measurement and 2) in rPPG measurement, the relative
position and orientation between the camera and moving facial
tissue change frequently with the distance being largely varied
such that the radiant flux on the ROI and its camera response,
as well as disturbances from light sources, are largely varied to
introduce serious motion artifacts in the distorted rPPG signal.
To solve these two motion-caused problems, more intelligent
facial ROI trackers and motion-artifact suppression for rPPG
are worth studying in this article.

To achieve an intelligent facial ROI tracker, face detec-
tion [13] must first be implemented to determine where the
target face is located when there are occasionally several
faces or face occlusions in the video sequence. After face
detection, the whole facial region should be continuously
tracked via object tracking algorithms. Among these object
tracking methods, Kanade–Lucas–Tomasi (KLT) [14] based
on sparse optical flow vectors from good features (such as
corners) in two subsequent frames of a video can achieve fast
face tracking after the manual definition of the target face in an
environment where the brightness of the object is assumed to
remain invariant. Some rPPG works [15]–[17] used only KLT
to track a person’s face. However, due to optical flow equations
relying on the first-order Taylor expansion and easily breaking
down when large motions occurred between sequential frames,
KLT tracking accuracy on unsolved challenges inherent in
the optical flow technique [18], such as large face movement
and partial occlusion cases as well as handling textureless
facial areas, is not ideal for estimating motion-robust HR for
rPPG [16], [17].

By introducing powerful multicue and multidimensional
features, including both handcrafted and deep neural net-
work features, discriminative correlation filtering (DCF) algo-
rithms [19], [20] have been proved to achieve more accurate
tracking but are somewhat more computationally expensive
than others. Therefore, an efficient convolution operator (ECO)
algorithm [21] for object tracking was proposed with a com-
pact generative model and factorized convolution operator

to cluster historical frames and employ dimension reduction
to reduce memory and time complexity. Some researchers
have demonstrated that ECO tracking accuracy and real-time
performance are superior to previous object tracking algo-
rithms, which is then an important motivation of this work for
integrating an ECO-based face tracker into facial ROI tracker
design for motion-robust rPPG.

After the face tracker obtains the data matrix of the face,
the desired facial ROIs containing the high-quality rPPG
signal should be continuously and accurately identified or
tracked. Traditional methods generally use face segmentation
[22], [23] and face alignment [24] to achieve facial ROI track-
ing. Usually, the entire face generated by face segmentation is
denoted as ROI. This method is simple in principle and fast
in implementation. Its core idea is to define an “explicit skin
cluster” classifier that expressly defines the boundaries of the
skin cluster in color space [22]. However, when illumination
is locally uneven and the background color is close to the skin
color, the ROI tracked by this segmentation method is usually
incoherent and contains noisy background areas. Pursche et al.
[25] used a CNN to select ROI and compared the effectiveness
of network based on a different number of training samples.
The ROIs calculated by CNN lead to significantly better and
faster results compared to ROIs from classical approaches. For
face alignment, Kazemi and Sullivan [24] used an ensemble of
regression trees (ERT) to estimate the landmark positions of
faces. The facial ROI was then tracked from the landmark
coordinates. The ERT optimized the sum of square error
loss and naturally handled missing or partially labeled data.
It achieved face alignment in milliseconds with high-quality
predictions. To guarantee face alignment accuracy in extreme
face pose or occlusion situations, a recently proposed practical
facial landmark detector (PFLD) [26] was designed with a
dual network structure to implement a backbone network for
predicting landmark position and used an auxiliary network
for face pose determination for regularizing face landmark
localization in the backbone network. However, when the
face has large movement, the landmark localization by the
alignment-based method still has errors and introduces abrupt
shifts in the facial ROI. The Kalman filter (KF) [17] is assumed
to be capable of modeling head motion for correction of
landmark coordinate errors of the landmarks generated by
PFLD. Therefore, we are inspired to conduct a deep study
on this facial ROI tracking problem in large face movement
disturbances.

The PPG- and BCG-based robust HR measurement algo-
rithms with motion-artifact suppression can be divided into
three categories: the blind source separation (BSS)-based
algorithm, and the model-based and deep-learning-based algo-
rithms. BSS refers to extracting a source signal from a mixed
signal without knowing the mixing process in advance. Among
BSS algorithms, independent component analysis (ICA) is a
commonly used method. Some ICA-based methods are applied
to rPPG to estimate HR, and the accuracy of experiments
proves their feasibility. However, it assumes that the dis-
tribution of different signals is statistically independent and
non-Gaussian [27]. To calculate the decomposition matrix,
sufficiently long signal data is necessary for data analysis.
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Therefore, it cannot guarantee real-time and high-accuracy
performance for real applications.

The model-based algorithm uses prior knowledge of dif-
ferent color components to achieve cardiac signal separation.
De Haan and Jeanne [28] proposed the chrominance-based
(CHROM) method, which needs a constant “skin-tone” vector
under white light to help suppress the effect of motion dis-
turbance. This constant vector was experimentally determined
and is not invariant in different experimental environments.
Therefore, the accuracy of estimating HR in different exper-
imental environments varies greatly. Afterward, the blood-
volume pulse vector-based (PBV) method [29] was proposed
to improve motion robustness. The PBV method utilized the
blood volume change signature to distinguish pulse-induced
color changes from motion artifacts. The covariance matrix
of the color data matrix should be calculated in the PBV
method. Then, the matrix is inverted for subsequent calcu-
lation. However, if the matrix is not invertible, the algo-
rithm cannot complete the extraction of the cardiac signal.
Later, Wang et al. [11] compared the previous BSS-based and
model-based algorithms and proposed a new model-based
rPPG algorithm called POS, which outperformed other algo-
rithms via experimental comparison in recent review work [5].

Most deep learning methods [8]–[10] are inherently
data-driven and supervised such that they depend on various
large labeled data sets to accommodate the diversity of data
sets acquired from different video devices and the large
variation in various head motions and lighting conditions.
For example, deep skin segmentation [10] via nonskin and
skin classification requires considerable human effort and
training data to implement skin labeling and annotation for
HR estimation. The learned mapping from these training data
sets to the desired skin segmentation prediction is achieved by
setting large parameters of deep neural networks to minimize
the specific distance measure (or loss function) between the
ground-truth label and the deep model’s predicted segmenta-
tion. This learned mapping over training examples is thus very
dependent on the trained data set and labeling such that it is
insensitive and ineffective to the newly acquired data sets with
their specific skin properties, challenging light conditions, and
unexpected large-motion disturbances. Therefore, there may be
some tradeoff between motion robustness and measurement
accuracy for newly acquired data sets from real scenarios.
Other distortion artifacts, such as the artifacts caused by video
compression, can be referred to in [30]. A detailed comparison
and review of the rPPG algorithm can be seen in the newly
published review papers [5], [31], [32]

Many existing methods have reported their perfor-
mance using private databases that only consist of videos
and gold-standard signals, such as ECG or PPG. The
MAHNOB-HCI database [33] was first used for remote
HR estimation. Face videos, audio signals, eye gaze,
and peripheral/central nervous system physiological signals,
including HR with small head movement and facial expres-
sion variation under laboratory illumination, were recorded.
Stricker et al. [34] released the PURE database consisting
of 60 videos from ten subjects, in which all the subjects were
asked to perform six kinds of movements, such as talking or

head rotation. Reference data were captured in parallel using
a finger clip pulse oximeter. Hsu et al. [35] released the PFF
database, consisting of 104 videos of ten subjects, in which
only small head movements and illumination variations were
involved and ground-truth results were recorded using the
MIO Alpha II wrist wearable device. These two databases are
limited by the number of subjects and recording scenarios,
making them unsuitable for building a real-world HR estima-
tor. Soleymani et al. [33] built a large-scale multimodal HR
database (named VIPL-HR), which consists of 2378 visible
face videos and 752 NIR face videos from 107 subjects. Three
different recording devices (RGB-D camera, smartphone, and
web camera) were used for video recording, and the PBV
signal of the fingertip oximeter served as the ground truth.

III. MATERIALS AND METHODS

The proposed multimodal quasi-contactless HR sensor fuses
two different physiological sensors to estimate HR. Specif-
ically, a DARMA optic fiber-based BCG sensor with a
sampling rate of 50 Hz and an FLIR BLACKFLY BFS-U3-
19S4 RGB camera are used to build our multimodal HR
sensor and acquire the corresponding multimodal data set. The
duration of each sample is 30 s, and ten volunteers are involved
in the acquisition of these multimodal data.

For a better explanation, we generally divide motion distur-
bances into two cases in the acquisition of these multimodal
data sets: the SS without obvious large body and head move-
ment and the MS with the subject’s body moving and the head
varying yaw angle being exceeding 30◦ or varying coordinates
exceeding 30 pixels. Specifically, in the MS, the subjects
played a game called “Mafia” [36], in which the “mafia” has
to cheat the “detectives” and “ordinary citizens” and vote on
a player to eliminate in each round. The players communi-
cate and function in a way that resembles real interrogation
situations. In the discussion part of the game, every “mafia”
member should make a statement. When they lied or were
queried, large emotional fluctuations may emerge, which led
to large body motions and large variations in head movements
and facial expressions. The video sequences capturing the face
image in 25 frames/s with a resolution of 640 × 480 were
recorded by a camera. The experimental results were compared
with ground-truth HR acquired by Heal Force’s three lead
PC-80B ECG Monitor. The damaged segments in the ECG
signal (for example, due to body movement or equipment
motion) were manually commented and deleted to ensure the
correctness of the reference value. In the experiment, the ref-
erence ECG signals that were eliminated did not exceed 5%
of the total signal. The whole framework of the motion-robust
quasi-contactless HR sensor is schematically shown in Fig. 2.

A. Motion-Robust rPPG via DFT and
Face Pose Constrained KF

In general, rPPG is very dependent on facial ROI selection
for HR estimation. With the facial ROI selection strategy
mentioned in Section II, we used the face-alignment-based
ROI algorithm. The proposed motion-robust rPPG is shown
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Fig. 3. Data processing flowchart for the proposed motion-robust rPPG with a DFT and face pose constrained KF.
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for landmarks can be modeled in the following state equation:
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ÿk−1

]

+ wk

= Ask−1 + Buk + wk . (2)

The landmark observation (measurement) of the tracking
process is assumed to occur at discrete points in time in
accordance with the following measurement equation:

mk = Hksk + vk (3)

where sk is the predicted facial landmark state vector
[xk, ẋk, yk, ẏk] in frame F, sk−1 is the existing facial landmark
state vector for frame F − 1 (current frame), and uk denotes
the acceleration vector of the landmark in frame F, which is
always ignored. wk and vk are assumed to be a white sequence
and are known as the process noise and measurement noise,
respectively, of the landmark in frame F; A is the usual state
transition matrix reflecting the effect of the previous state on
the current state. The matrix B is the optional control input,
which is always ignored with the acceleration vector uk of
the landmark. The matrix H in the measurement (3) gives
a noiseless connection between the landmark state s and the
measurement m in the current frame of the video sequence.
The covariance matrices for wk and vk are given by
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where 0 denotes a matrix with zero elements. The respective
covariance matrices, Qk and Rk , are assumed to be known.

By initializing KF filtering at some point tk , we have
a prior landmark position estimate denoted as ŝ−

k and the
corresponding error ê−

k = sk − ŝ−
k having its prior covariance
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k = E[ê−

k ê−
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T ]. With the

prior estimate ŝ−
k , we now use the measurement mk to improve

the prior estimate. To this end, we adopt the following update
recursion:
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)
(7)

where the updated (posterior) estimate is equal to the prior
estimate plus a correction term, which is proportional to
the error in predicting the newly arrived observation vector
and its prediction based on the prior estimate. Matrix Kk ,
known as the Kalman gain, controls the amount of correction,
and its value is determined to minimize the following mean
square error J (Kk) derived from the trace of posteriori error
covariance matrix associated with the updated estimate since

the trace is the sum of the mean square errors in the estimates
of all the elements of the state vector:
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T ]. (9)

After substituting (4) into (8) and then substituting the
resulting expression for ŝk into (9) as well as using P−
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T ] as a prior estimation error, which is
uncorrelated with the current measurement error vk , we obtain
the following result:
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We proceed to differentiate the trace of Pk with respect to
Kk and note that the trace of P−

k HT
k KT

k is equal to the trace
of its transpose KkHkP−

k . The derivative result is
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We set the derivative equal to zero and obtain the following
optimal Kalman gain:
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The posterior error covariance matrices Pk for the optimal
estimate are now computed and related to the prior error
covariance matrix P−

k by substituting the optimal gain expres-
sion into (10) as follows:
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Note that we need prior estimate ŝ−
k and covariance matrix

P̂−
k to assimilate the measurement mk for the updated estimate

ŝk by the use of (7), and we can expect such a similar need at
the next iteration to make optimal use of the next measurement
mk+1. The updated ŝk is projected forward as ŝ−

k+1 = Aŝk via
the transition matrix while ignoring the contribution of wk due
to (4).

The prior error covariance matrix P−
k+1 associated with ŝ−
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is obtained by transforming the prior error e−
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the expression for P−

k+1 as follows by considering that wk is
the process noise for the previous state and has zero cross
correlation with ek :
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motion, which influences the geometric structure between the
light source, skin surface, and camera. p(t) denotes the cardiac
pulse signal that we are interested in.

A 3 × 3 normalization matrix N with constraint N · uc · I0 ·
c0 = 1 is used to temporally normalize x(t) as

x̄(t) = N · x(t) ≈ 1 · (1 + i(t))+ N · us · I0 · s(t)

+ N · up · I0 · p(t). (20)

This temporal normalization can simply be implemented
by dividing its samples by their mean over a temporal inter-
val, i.e., x̄(t) = x(t)/μ(x), where μ(x) can be a running
average centered around a specific image or an average of
an overlap-add processing interval that includes the specific
image. In either case, the temporal normalization is preferably
taken over a number of images such that the interval contains
at least a pulse period. This temporal normalization can
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Fig. 6. BCG signal decomposition: (a) the original BCG signal; (b) the 8th level harmonic; (c) the 7th level harmonic; (d) the 6th level harmonic; (e) the
5th level harmonic (selected component); (f) the 4th level harmonic; (g) the 3rd level harmonic; (h) the 2nd level harmonic.

Fig. 7. Frequency response curve of length-3 FIR notch filters with different
stopband frequencies fi . The closer the dominant frequency of the input signal
is to fi , the greater the attenuation of the filtered signal.

of the notch filter, small output signals should be given more
weight, whereas large output signals should be given less
weight. Thus, we define Wi [m] for every frequency fi

Wi [m] = exp

⎛
⎝−γ 1

S

S∑
j=1

R[m, j ]Pi[m, j ]
⎞
⎠ (28)

where γ = [mini=1,...,F (R[m, j ]Pi[m, j ])]−1 and R[m, j ] for
j = 1, . . . , S are a set of weights related to the input signals.
R are defined as the signal-to-output power ratios of the input
signals for a notch filter centered on the target frequency. The

signal-to-output ratios are computed and normalized to create
a set of weights R for the S inputs as

R[m, j ] = U[m, j ]/O[m, j ]∑S
j=1 U[m, j ]/O[m, j ] (29)

where O[m, j ] is the mean squared value of the input

O[m, j ] = δO[m − 1, j ]

+ (1 − δ)

f req∑
k=1

y2
f [(m − 1) ∗ f req + k, j ] (30)

which is initialized to O[2, j ] = U(freq + 1)+ U(freq + 2)+
· · ·+U(2∗freq) and U(x) = (u[x, j ]−2u[x−1, j ]cos(2π f1)+
u[x −2, j ])2 and y f are an output from a notch filter centered
at the estimated frequency of the previous sample (m − 1)

y f [n, j ] = u[n, j ] − 2u[n − 1, j ]cos(2π f [m − 1])
+ u[n − 2, j ] (31)

where f [m − 1] is the previously estimated frequency (ini-
tialized to f [2] = f1). The final frequency (HR) estimation
of each second is then computed as the weighted sum of the
notch frequencies of the filter bank

f [m] =
∑F

i=1 Wi [m] fi∑F
i=1 Wi [m] . (32)

IV. EXPERIMENTAL RESULTS

To evaluate our multimodal sensor via comparison with
other state-of-the-art methods, we first evaluate the effect of
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DFT and corresponding motion-artifact suppression in the
proposed method by replacing the traditional facial ROI track-
ing method (KLT + ERT) in the POS-based HR estimation
framework with the proposed DFT and KF algorithms for
experimental comparison. Thirty videos in SSs and motion
disturbances are acquired and analyzed by the classical and
proposed methods. Specifically, the state-of-the-art methods
for comparison are as follows: MODWT-BCG [4], ICA [42],
PBV [29], and POS [11] methods. The following metrics are
used to evaluate the performances of facial ROI tracker and
HR estimation.

1) Mean Frame Rate (MFR): The average number of video
frames that the program can process in one second

MFR = 1

N

N∑
n=1

F(n) (33)

where F(n) represents the number of video frames
which has been processed in the nth second.

2) Tracker Quality (TQ): We define the TQ metric as the
ratio of the number of pixels neff in the valid facial areas
to the number of pixels nall in the overall ROIs. The valid
facial areas are determined by manual marking. The
TQ’s value range should be [0, 1]. When the measured
value is close to 1, it means that the face tracker has
achieved high-precision tracking

TQ = neff

nall
. (34)

3) Mean Absolute Error (MAE): We use this metric to
compare our method with other methods on the HR
estimation accuracy and compare the effect of each
module in the algorithm on the accuracy of the entire
algorithm

MAE = 1

N

N∑
n=1

∣∣HRn
est − HRn

g

∣∣ (35)

where HRn
est is the estimation of HR and HRn

g is the
ground truth of HR.

4) Root-Mean-Square Error (RMSE): We use RMSE to
measure the difference between the reference HR and
the HR calculated from the video. RMSE represents
the sample standard deviation of the absolute difference
between the reference value and the measured value, that
is, the smaller the RMSE is, the more accurate the HR
estimation is

RMSE =
√√√√ 1

N

N∑
n=1

(
HRn

est − HRn
g

)2
. (36)

5) Pearson Correlation of HR: The Pearson correlation r is
applied to evaluate the correspondence of HR between
the quasi-contactless signal and the ECG-reference

r = n
∑

xi yi −∑ xi
∑

yi√
n
∑

x2
i − (∑ xi

)2√
n
∑

y2
i − (∑ yi

)2 . (37)

Fig. 8. Tracking quality in three cases of an SS, MS, and nontarget face
entrance for the proposed DFT-KF and traditional KLT + ERT methods. The
red lines for the DFT-KF method show better tracking quality than the blue
lines for the KLT + ERT method.

As shown in Fig. 8(a), in the SS, there is no obvi-
ous difference between the proposed DFT-KF and tradi-
tional KLT + ERT methods in terms of tracking quality.
Fig. 8(b) and (c) shows that the proposed method outperforms
traditional methods in the two cases of motion and nontarget
entrance disturbances.

We further evaluate different ROI tracking methods on five
persons in terms of the mean TQ and MFR. Based on the above
two metrics, the correctness and real-time performance of ROI
selection can be evaluated. We collect 30-s-long data from
the ECG, BCG, and rPPG sensors for each sensor. To ensure
that the data are simultaneously collected at the same time in
the log file, all the data collection programs were run on one
computer. The log file saved the time node in each sampling
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Finally, we conduct DFT-KT-ICA and BCG and DFT-KT-
POS and BCG method comparisons. The Pearson correlation
and Bland–Altman plots [44] are reported in Figs. 11 and 12,
respectively. The RMSE of DFT-KT-POS and BCG is lower,
and the correlation coefficient is higher than that of DFT-KF-
ICA and BCG. The distance between limit lines (dotted line)
and arithmetic mean of DFT-KT-POS and BCG is smaller.
This means that DFT-KT-POS and BCG is more reliable in
long-term HR estimation.

V. CONCLUSION

In this article, we propose a multimodal quasi-contactless
HR sensor that can be used in computer-aided police interroga-
tion by fusing optical-fiber-based BCG with video-based rPPG
physiological signals via a microbending fiber-optic cushion
sensor and RGB camera. We design a DFT via face alignment
and object tracking technology, as well as a face pose con-
strained KF, to improve the robustness of the rPPG algorithm
in extreme poses, motion disturbances, and multiplayer scenes.
It can realize face tracking and correct selection of ROI
in challenging situations, such as face occlusion, multiple
faces, and large-angle rotation of the target face in real police
interrogation.

The characteristics of these two multimodal signal types
under different MSs were analyzed. In a relatively SS, the HR
calculated based on the optical-fiber-based BCG sensor is
more accurate than that calculated based on the video-based
rPPG sensor. When the distortion of motion artifacts on the
BCG signal is more intense, the video-based rPPG sensor
produces more accurate HR estimation than the BCG sensor.
The notch filters applied for two signal sources calculate
the weights of different discrete frequencies. Simultaneously,
the current HR estimation result is compensated by the con-
sistent HR estimation in the past result. The multimodal HR
sensor has higher accuracy than the method solely based on
single-modal rPPG or BCG-based HR sensor.

More advanced rPPG-based contactless HR sensors with
detail-preserving noise removal [45], [46], long-term face
occlusion, as well as face and body shake resistance [47]
will be developed in future work to be more robust and
accurate to large-motion disturbances in various challenging
conditions for calculating more useful physiological indices,
such as respiration rate, HR variability, and blood pressure
[45], in computer-aided police interrogation.
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